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Résumé 
Les systèmes lacustres constituent des analogues de réservoir essentiels pour la province du 

Pré-sel brésilien, car leur hétérogénéité de faciès et leur complexité stratigraphique posent des 
défis persistants pour la modélisation des réservoirs. Les affleurements analogues jouent un rôle 
clé dans ce contexte, car ils complètent le gap de données entre l’échelle sismique régionale et 
l’information ponctuelle issue des forages. Les approches de terrain traditionnelles, bien 
qu’indispensables, restent limitées par l’accessibilité, la subjectivité dans la classification des 
faciès et la difficulté de transposer les observations dans des modèles tridimensionnels. Cette 
thèse vise à surmonter ces limites en proposant et en testant un workflow avec des méthodes 
multiple structurées principalement autour de la stratigraphie séquentielle à haute résolution et 
la modélisation numériques d’affleurement obtenus par photogrammétrie. Ce processus intègre 
les données de terrain et de laboratoire au sein d’outils numériques, garantissant que les 
observations stratigraphiques, sédimentologiques et pétrographiques restent solidement ancrées 
dans la pratique géoscientifique. Les méthodes numériques employées incluent les Local 
Binary Patterns, les réseaux de neurones convolutionnels et l’imagerie hyperspectrale, qui 
ajoutent un niveau de détail quantitatif aux approches de base. 

Les recherches ont porté sur deux systèmes lacustres : la Barre du Cengle (Paléocène, 
France) et la Séquence Balbuena III (Maastrichtien-Danien, bassin de Salta, Argentine). Ces 
cas d’études contrastés ont permis d’évaluer la robustesse et la complémentarité des approches 
méthodologiques. L’application de la stratigraphie séquentielle à haute résolution soutenue par 
des modèles numériques d’affleurements de la Barre du Cengle a produit des cadres 
stratigraphiques détaillés, mettant en évidence le potentiel de l’analyse d’affleurements à haute 
résolution pour identifier les séquences de dépôt et les motifs d’empilement. L’approche a 
ensuite été étendue au Bassin de Salta, où la photogrammétrie a permis d’obtenir des modèles 
à résolution centimétrique à millimétrique, utilisés comme base pour des analyses avancées. 
Les classifications texturales par Local Binary Patterns ont révélé des motifs cohérents avec 
les interprétations stratigraphiques, tandis que les réseaux de neurones convolutionnels ont 
généré des nuages de points 3D classifiés par lithofaciès, démontrant une capacité de 
généralisation entre affleurements. Les données hyperspectrales permettent d’obtenir des 
informations sur la composition minéralogique des faciès à partir du comportement spectral. 
Dans l’ensemble, ces méthodes se révèlent complémentaires et leur intégration renforce le cadre 
géologique en fournissant une base plus solide pour l’interprétation stratigraphique, l’analyse 
sédimentologique, la reconnaissance des faciès et l’identification des corps géologiques. 

L’apport scientifique de cette thèse réside dans son caractère intégrateur, unissant les 
observations traditionnelles de terrain et de laboratoire à des approches numériques afin de 
produire à la fois des analyses qualitatives fondées sur des preuves géologiques et des résultats 
quantitatifs reproductibles et transférables aux études de réservoir. Combiner les approches 
stratigraphiques, géométriques, texturales, spectrales et issues de l’apprentissage profond 
améliore l’efficacité de l’acquisition et de l’interprétation des données, tout en faisant 
progresser la caractérisation des affleurements analogues de réservoir. Ce travail fournit ainsi 
une base méthodologique solide pour de futures applications dans la province du Pré-sel 
brésilien, où la prise en compte de l’hétérogénéité, de la distribution des faciès et de 
l’architecture stratigraphique est essentielle à la modélisation réaliste des réservoirs. 

Mots-clés : Analogues de réservoir ; Province du Pré-sel brésilien ; Stratigraphie séquentielle 
à haute résolution ; Modèles numériques d’affleurement ; Apprentissage profond en 
géosciences ; Imagerie hyperspectrale.  
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Abstract 
Lacustrine systems are key reservoir analogs for the Brazilian Pre-Salt Province, as their 

facies heterogeneity and stratigraphic complexity pose persistent challenges for reservoir 
modeling. Outcrop analogs are fundamental in this context because they bridge the mesoscale 
gap between regional seismic data and point-scale well information. Traditional field-based 
methods, although essential, are limited by accessibility, subjectivity in facies classification, 
and difficulties in scaling observations to three-dimensional reservoir models. This thesis 
contributes to addressing these challenges by proposing and testing a multi-method workflow 
structured around high-resolution sequence stratigraphy (HRSS) and photogrammetric Digital 
Outcrop Models (DOMs). The workflow integrates field and laboratory datasets with digital 
techniques, ensuring that stratigraphic, sedimentological, and petrographic observations remain 
firmly grounded in geoscientific practice. Methods include Local Binary Patterns (LBP), 
convolutional neural networks (CNNs), and hyperspectral imaging (HSI), which add 
quantitative detail to the core approaches. 

The research focused on two lacustrine systems: the Paleocene Barre du Cengle in France 
and the Maastrichtian–Danian Balbuena III Sequence in the Salta Basin, Argentina. These 
contrasting case studies enabled the testing of methodological robustness and complementarity. 
The objective of this work was to evaluate whether digital and analytical methods can generate 
reproducible, geologically coherent, and parametrized datasets that improve facies 
characterization and stratigraphic interpretation, with the understanding that these outputs are 
expected to support future transfer to reservoir models, extending the contributions initiated in 
this research. The thesis first applied HRSS supported by DOMs to the Barre du Cengle, 
producing detailed stratigraphic frameworks that highlighted the potential of high-resolution 
outcrop analysis for identifying depositional sequences and stacking patterns. It was then 
expanded in the Salta Basin, where photogrammetry provided centimeter- to millimeter-scale 
DOMs, used as a platform for advanced analysis. Texture-based classification with LBP, 
applied in an exploratory way, revealed textural patterns consistent with stratigraphic 
interpretations, suggesting potential for highlighting high-resolution cyclicity and supporting 
the identification of stratigraphic surfaces. CNN-based classification provided robust results, 
successfully generating lithofacies-classified 3D point clouds and demonstrating cross-outcrop 
generalization capacity. Hyperspectral data added a compositional dimension, linking spectral 
behaviors to facies mineralogy. Overall, the results demonstrate that the different methods are 
complementary, and their integration strengthens the geological framework by providing a 
more robust basis for stratigraphic interpretation, sedimentological analysis, environmental 
determination, facies recognition and geobody identification. 

The scientific contribution of this thesis lies in its integrative nature, uniting traditional field 
and laboratory observations with digital techniques to provide both qualitative insights 
anchored in geological evidence and quantitative outputs that extend results toward 
reproducible datasets with applicability to reservoir studies, while also improving efficiency in 
data acquisition and interpretation. By combining stratigraphic, geometric, textural, spectral, 
and deep learning approaches, the research advances reservoir analog outcrop characterization 
and provides a methodological foundation for future applications in the Brazilian Pre-Salt 
Province, where capturing heterogeneity, facies distribution, and stratigraphic architecture is 
crucial for realistic reservoir modeling. 

Keywords: Reservoir analogs; Brazilian Pre-Salt Province; High-Resolution Sequence 
Stratigraphy; Digital Outcrop Models; Deep Learning in Geosciences; Hyperspectral imaging.  
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1.1. Scientific Context 
Accurate reservoir modeling is essential for predicting hydrocarbon production 

performance, optimizing field development strategies, and reducing geological uncertainties. 
This is particularly critical in complex systems such as the Brazilian Pre-salt reservoirs of the 
Santos and Campos basins, which are characterized by extensive carbonate successions 
deposited in lacustrine environments during the rift-to-sag evolution phases of the basins 
(Bueno de Moraes et al., 2024). These reservoirs display layered stratigraphic architectures, 
marked heterogeneity caused by diagenetic processes, and complex depositional geometries 
(Fragoso et al., 2023; Pedrinha and Artagão, 2024). Reflecting their significance, Pre-salt fields 
accounted for 3.803 million barrels of oil equivalent per day (boe/d) in May 2025, representing 
approximately 79.8% of Brazil's total hydrocarbon output. In that month, the country produced 
3.679 million barrels of oil per day, with combined oil and gas volumes totaling 4.763 million 
boe/d (ANP, 2025). 

One of the main limitations affecting Pre-salt reservoir characterization is the restricted 
availability of core data, which limits the ability to define facies distributions and stratigraphic 
heterogeneities in detail (Guerrero et al., 2024). Seismic surveys provide large-scale structural 
information, but with limited vertical resolution, while well data deliver high-resolution 
stratigraphic records at a single location with minimal lateral continuity (Grammer et al., 2004; 
Howell et al., 2014). Outcrop analogs play a key role in addressing this gap by offering 
mesoscale geological information that effectively bridges the gap between seismic-scale and 
borehole-scale observations, particularly regarding sedimentary body geometries, stacking 
patterns, and depositional facies distribution (Borgomano et al., 2001; Howell et al., 2014). 

Outcrops represent an intermediate scale between seismic and well data, allowing for the 
direct observation and measurement of geological features that are critical for building robust 
conceptual reservoir models (Grammer et al., 2004; Hodgetts, 2013). However, conventional 
outcrop studies rely on manual descriptions, which are time-consuming, subjective, and often 
lack quantitative rigor, especially when dealing with complex carbonate systems. To overcome 
these limitations, Digital Outcrop Models (DOMs) have been increasingly adopted as a means 
to systematically extract spatial parameters such as layer thicknesses, sedimentary structures, 
and bounding surfaces (Bellian et al., 2005; Hodgetts, 2013; Marques et al., 2020). 

DOMs can be generated through various methods, including terrestrial and fixed-platform 
systems; however, photogrammetry or LiDAR technologies mounted on Remotely Piloted 
Aircraft Systems (RPAS) have become the most widely adopted approaches, enabling high-
resolution 3D representations of outcrop surfaces (Marques et al., 2020; Villarreal et al., 2020). 
These models provide dense point clouds, 3D meshes, and textured surfaces that can be 
imported into reservoir modeling software, supporting both conceptual model development and 
geostatistical analyses (Pringle et al., 2004; Buckley et al., 2006, 2009). Despite these 
advantages, a significant challenge persists in the automatic identification and quantification of 
geological bodies within DOMs, particularly in sedimentary geology, where depositional 
architectures exhibit complex geometries and heterogeneous internal structures (Li et al., 2019; 
Roisenberg et al., 2022). 

To address this challenge, this thesis proposes an innovative workflow that integrates High-
Resolution Sequence Stratigraphy (HRSS) and digital methods such as Local Binary Patterns 
(LBP), Convolutional Neural Networks (CNNs), and hyperspectral data, aiming to automate 
the classification of lithofacies and stratigraphic elements in DOMs. This integration supports 
the extraction and parameterization of field-derived geological data, which provides valuable 
input for the generation of realistic reservoir models (Jones et al., 2011; Howell et al., 2014; 
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Fragoso et al., 2021a, 2021b; Yeste et al., 2021). Furthermore, HRSS represents not only a 
supporting framework for organizing digital data, but also a standalone method capable of 
providing critical insights for reservoir modeling. By identifying vertical and lateral facies 
variations, stratigraphic stacking patterns, correlation distances at different hierarchical levels, 
and key stratigraphic surfaces such as sealing layers or super-k intervals, HRSS contributes to 
defining reservoir heterogeneity and compartmentalization (Silveira, 2020; Magalhães et al., 
2020; Fragoso et al., 2021a). Whereas HRSS is combined with LBP, CNN, and hyperspectral 
data analysis in the Salta Basin case studies, it is applied exclusively in the Cengle Plateau 
study, supported by photogrammetry-derived DOMs and aimed at the detailed sedimentological 
and stratigraphic characterization required for depositional model definition. This highlights 
that precise outcrop-based sedimentological and stratigraphic detailing alone can already play 
a central role in reservoir model development. 

The present work focuses on developing conceptual depositional models in lacustrine 
settings, as well as generating qualitative and quantitative geological data extracted from 
DOMs. These contributions are framed within the “Conceptual Geological Model” step of the 
reservoir modeling workflow (Fig. 1.1). This step is essential for constructing more realistic 
geological models that better capture the heterogeneity and organization found in the 
subsurface. 

 
Fig. 1.1. General workflow for reservoir geological modeling. The highlighted step, “Conceptual 

Geological Model,” represents the main focus of this thesis, whose contributions are primarily 
situated in the integration of outcrop-derived data from DOMs, HRSS, and other advanced digital 
techniques. Adapted from Roemers-Oliveira et al. (2010). 

The two study areas (Fig. 1.2), La Barre du Cengle in southeastern France and the Salta 
Basin in northwestern Argentina, were selected for the development and validation of the 
proposed methodologies due to their significance as analogs sharing key characteristics with 
Brazilian Pre-salt reservoirs, such as carbonate deposition under lacustrine conditions and 
stratigraphic architectures marked by high-frequency sequences. Although both settings differ 
from the Pre-salt in terms of lithofacies, they provide complementary and valuable contrasts for 
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testing digital and stratigraphic workflows. The Salta Basin exhibits more pronounced 
lithofacies contrasts defining elementary sequences, whereas in La Barre du Cengle these 
transitions are more subtle. There, color variations mainly reflect different intensities of 
pedogenesis, and while some features are macroscopically recognizable, detailed petrographic 
observations play a more central role, being required to distinguish microfacies and characterize 
depositional environments. 

A regional geological framework for both basins is presented in Section 2.1, while more 
detailed information is provided in the chapters structured as scientific articles, each dedicated 
to the application of the proposed methods in one of the study areas. 

 
Fig. 1.2. Location map of the study areas and their geological context. (A) Barre du Cengle (Arc Basin, 

southeastern France); (B) Salta Basin (northwestern Argentina); and (C) the Brazilian Pre-salt 
Province, including the offshore Campos and Santos basins. Locations A and B correspond to the 
case studies analyzed in this work, while C represents the target reservoir systems for which the 
analog models are intended. 

By developing and validating methodological approaches for outcrop-derived data 
acquisition, lithofacies classification, and stratigraphic organization, this thesis focuses on 
generating geological insights and parameter foundations that can support future reservoir 
modeling applications. The combined use of photogrammetry-based DOMs, LBP, CNN-based 
lithofacies classification, hyperspectral data, and HRSS provides a structured framework for 
extracting and organizing quantitative geological information from outcrop analogs. While 
direct reservoir model parameterization is beyond the scope of this work, the methods and 
datasets produced here are intended to contribute essential groundwork for subsequent 
integration into subsurface reservoir models, enhancing geological consistency and predictive 
capacity in carbonate-dominated lacustrine systems. 
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1.2. Objectives and Research Questions 
This thesis aims to contribute to the generation and extraction of qualitative and quantitative 

geological data to support reservoir characterization and modeling in carbonate-dominated 
lacustrine settings, with particular emphasis on developing transferable approaches and insights 
relevant to Brazilian Pre-salt deposits. However, the methods and workflows developed 
throughout this research extend beyond this specific context, also contributing to the broader 
field of digital outcrop processing, particularly through the development and integration of 
advanced workflows applied to complex and diverse geological architectures. These efforts are 
grounded in the recognition that carbonate-dominated systems often present significant 
challenges for the identification and delineation of sedimentary bodies, due to their complex 
geometries, lateral facies transitions, diagenetic overprinting, and, in many cases, the visual 
similarity of facies in terms of color and texture in standard field imagery. 

These aspects complicate the visual discrimination of key facies, particularly in thin or 
interbedded successions. In the Salta Basin (Fig. 1.3), for example, differentiating stromatolitic 
layers or buildups interbedded with laminite facies is often difficult, as both may present only 
subtle contrasts in color and texture. If this can be challenging even in accessible outcrops, as 
shown in Fig. 1.3, it becomes virtually impossible in steep and inaccessible cliffs (Fig. 1.4). 
Although cliffs offer excellent lateral continuity, the lack of physical access hinders the 
identification of consistent facies patterns and stratigraphic relationships. 

 
Fig. 1.3. Field examples from the Salta Basin illustrating the difficulty of visually distinguishing 

stromatolitic facies interbedded within a laminite unit. (A) Biostromes of stromatolites highlighted 
in orange in (B). (C) Bioherm of stromatolites highlighted in orange in (D). Visual similarities in 
color and texture hinder the recognition of these facies under standard field conditions. Source: 
Roemers-Oliveira et al. (2015). 



16 
 

 
Fig. 1.4. Steep cliff in the Salta Basin exposing a thick lacustrine carbonate succession on the hanging 

wall of a major N–S-trending fault. Despite offering excellent lateral continuity, the vertical exposure 
and lack of physical access prevent detailed facies characterization under standard field conditions. 

The central research question that guides this work is: 

Is it possible to apply methods based on outcrop-derived data to enhance the extraction 
of stratigraphic elements and the detection of geological bodies in carbonate outcrop 
analogs? 

The underlying hypothesis is that an integrated approach, which combines field-based 
observations, laboratory analyses, and advanced digital tools applied to Digital Outcrop Models 
(DOMs), can improve the identification, organization, classification, and quantification of 
geological bodies in outcrop settings. 

In addition, this research pursues the following specific objectives: 

• To acquire high-resolution field data and generate Digital Outcrop Models (DOMs) 
from key lacustrine and palustrine carbonate outcrops; 
 

• To integrate DOM-based analyses with traditional geological observations from the 
field and laboratory, ensuring consistent geological interpretation; 
 

• To establish correlation patterns and distances between lacustrine and 
lacustrine/palustrine settings across different study areas; 
 

• To apply and evaluate multiple methods, including High-Resolution Sequence 
Stratigraphy (HRSS), Local Binary Patterns (LBP), Convolutional Neural Networks 
(CNNs), and hyperspectral data, for the classification and extraction of lithofacies 
and depositional sequences within an integrated stratigraphic framework; 
 

• To contribute to the geological knowledge of each study area by improving the 
understanding of their depositional architecture and stratigraphic organization; 
 

• To contribute to the advancement of digital techniques applied to outcrop analogs, 
highlighting their potential for generating conceptual geological models to support 
reservoir characterization. 
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The originality of the approach lies in the integrative nature of the workflow. By combining 
“hard” field data with remote sensing and digital analysis, this work seeks to build a robust 
methodological foundation for future reservoir modeling applications based on outcrop analogs. 

1.3. Thesis Outline 
This thesis is organized into seven chapters. Following this general introduction (Chapter 1), 

Chapter 2 presents the Geological and Methodological Frameworks, including a review of the 
regional geology of the Arc and Salta Basins and an overview of the High-Resolution Sequence 
Stratigraphy (HRSS) and photogrammetry-based Digital Outcrop Models (DOMs), which form 
the methodological backbone of the thesis. Chapters 3 to 6 consist of scientific articles, each 
addressing specific aspects of the research. These articles are at different stages of publication 
and reflect the progression of the work over the course of the PhD. Chapter 7 presents a 
transversal discussion that integrates the insights gained from the articles, highlights 
overarching implications, and provides the general conclusions and perspectives for future 
research. A visual overview of the content of each chapter is shown in Fig. 1.5, which 
summarizes the thesis outline. 

Each chapter reflects different challenges encountered throughout the project. Data 
acquisition and model processing required significant fieldwork, often carried out under 
challenging logistical conditions. Some parts of the work benefited from the valuable assistance 
of M1 and M2 students, whose support streamlined important phases of the research. In 
addition, the project involved extensive collaboration among institutions, including researchers 
from CEREGE/Aix-Marseille Université (AMU, France), Petrobras (Brazil), Geomap 
(Argentina), and two Brazilian universities: Universidade Federal do Pampa (Unipampa) and 
Universidade Estadual de Maringá (UEM). 

Although grounded in formal scientific writing, this thesis also reflects the real-world 
constraints and iterative nature of conducting field-based research. Some aspects were 
developed in greater depth, while others remain open for future refinement. Overall, the 
manuscript seeks to balance methodological rigor with the adaptability required to deal with 
evolving tools, on-site constraints, analytical frameworks, and the availability of equipment and 
resources. 

Concerning the scientific articles included in this thesis, Chapter 3 – La Barre du Cengle 
presents the results of a high-resolution stratigraphic framework developed through the 
application of High-Resolution Sequence Stratigraphy (HRSS) supported by Digital Outcrop 
Models (DOMs). The chapter corresponds to a scientific paper titled “The anatomy and stacking 
pattern of palustrine-dominated carbonate sequences from the Cengle Plateau, Paleocene, SE 
France: A multi-scalar approach” published in Sedimentary Geology in 2024 (Roemers-
Oliveira et al., 2024a). The study provides a detailed analysis of the anatomy and internal 
organization of the identified sequences, including vertical stacking patterns and lateral facies 
variations. It also presents the first absolute age constraints for this unit, obtained via U–Pb 
dating on micrite, indicating that sedimentation occurred earlier than previously assumed. 
These findings suggest a potential revision of the Arc Basin stratigraphy. The analysis integrates 
petrographic, photogrammetric, geochronological, scanning electron microscopy (SEM), and 
geochemical data to interpret the environmental dynamics during deposition. 
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Fig. 1.5. Outline of the thesis chapters, providing a visual summary of their main content. 

Chapter 4 – Salta Basin presents the high-resolution stratigraphic framework integrated 
with advanced digital techniques in Digital Outcrop Models (DOMs) for the Balbuena III 
Sequence in the Cabra Corral area, located within the Metán–Alemanía Sub-basin (Salta Basin). 
The study, written as a paper called “Advanced digital techniques applied to outcrop models: 
Integrating Local Binary Pattern (LBP) and Convolutional Neural Network (CNN) to support 
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stratigraphic and sedimentological interpretation of reservoir analogs in the Salta Basin, 
Argentina,” was accepted for publication in Marine and Petroleum Geology on October 6, 2025 
(Roemers-Oliveira et al., 2025a). The work combines High-Resolution Sequence Stratigraphy 
(HRSS) with digital analyses such as Local Binary Pattern (LBP) and Convolutional Neural 
Networks (CNNs) to investigate facies distribution and stratigraphic architecture. The HRSS 
provides the stratigraphic framework of the area, where elementary sequences can be traced for 
tens of kilometers. LBP analysis supports the identification of high-frequency cyclicity, while 
CNN-based segmentation enables the classification of eleven lithofacies, encompassing 
carbonate, siliciclastic, mixed, and volcaniclastic types. These lithofacies are associated with 
the scale of the elementary sequences. This classification allows the generation of lithofacies-
classified 3D point clouds, enhancing the spatial visualization of facies across the outcrop. By 
integrating digital and traditional approaches, and by discussing the role of the Salta Basin as 
an analog for the Brazilian Pre-salt, the study contributes to improving the accuracy and 
predictive capability of reservoir analog modeling, especially in data-scarce settings such as 
those observed in some areas of the Pre-salt. 

Chapter 5 – CNN Optimization was developed in collaboration with Jérémy Marchini, a 
master’s student (M2) under my supervision, in coordination with Dr. Sophie Viseur, and 
further explores the application of CNNs to classify 3D point clouds by lithofacies. The 
manuscript “From Pixels to Point Clouds: Evaluating CNN Strategies for 3D Lithofacies 
Classification in Digital Outcrop Models” is planned for submission to Geodata and AI. The 
work evaluates different CNN workflow configurations using high-resolution images from two 
outcrops of the Balbuena III Sequence in the Salta Basin. The optimized approach allows the 
generation of lithofacies-classified point clouds that preserve stratigraphic coherence across 
these sites. In addition to refining the methodology, the work highlights key geological insights 
related to facies continuity, the role of lithological contrast in detecting thin beds, and the 
influence of geometry on classification performance. This contribution reinforces the potential 
of deep learning techniques to support stratigraphic and sedimentological interpretation in 
outcrop analog studies. 

Finally, Chapter 6 – Hyperspectral presents the initial efforts to apply hyperspectral 
techniques for lithofacies classification in the Salta Basin and is structured as an article titled 
“Outcrop-based hyperspectral data for lithofacies discrimination in lacustrine deposits in the 
Salta Basin, Argentina”, which is currently in preparation and will be submitted to a journal 
covering geosciences and remote sensing. This stage of the research posed the greatest technical 
challenges and represents an initial attempt to explore hyperspectral techniques within the Salta 
Basin, an approach that, although still emerging, is gaining increasing relevance in geosciences. 
Despite limitations related to the hyperspectral sensor available during fieldwork, which 
covered the infrared range between 900 and 1700 nm and was not optimal for differentiating 
carbonate facies, it was still possible to acquire non-imaging spectroscopy data that enabled the 
identification of spectral signatures for various facies within the Balbuena III Sequence. The 
study also benefited from the contribution of Lorenzo D'Angelo, a master’s student (M1), who 
supported the development and optimization of code used to implement Linear Discriminant 
Analysis (LDA) as a facies classification method for the spectroscopy data. For the HSI, in 
addition to LDA, Multilayer Perceptron (MLP), and K-means clustering methods were also 
applied to generate 2D maps classified by lithofacies groups, thereby overcoming the 
limitations imposed by the reduced spectral range. 

As complementary materials, the appendices include all abstracts submitted to conferences 
(Table 1.1) and a scientific article co-authored by me: Guadagnin et al. (2025), Building of 
classified 3D point clouds of outcrop with automatically segmented images. Although the study 



20 
 

was conducted in an area outside the scope of this thesis, its methodology played an important 
role in shaping the approaches developed and applied throughout the work. 

Table 1.1. Conference contributions during the PhD period. 
Event Date and location  Title 

36th International Meeting of 
Sedimentology

June 12-16, 2023, Dubrovnik, 
Croatia

Anatomy and stacking pattern of palustrine-dominated carbonate 
parasequence (Thanetian-Ypresian, SE France): insights from 
carbonate petrography associated with aerial photogrammetry

17th Bathurst Meeting-
International Meeting of 

Carbonate Sedimentologists

September 5-7, 2023, Naples, 
Italy

Depositional context of the Balbuena III Sequence 
(Maastrichtian/Danian)  in the Salta Basin, Argentina: integrated 

approach from sedimentological, stratigraphical and digital outcrop 
models

31e Congrès de l'ED251 2024
May 16-17, 2024, Aix-en-

Provence, France
Anatomy and stacking pattern of palustrine-dominated carbonates 

from "La Barre du Cengle", Paleocene, SE France

6th Virtual Geoscience 
Conference

September 9-12, 2025, 
Lausanne, Switzerland

Reading Rock Record through Digital Outcrop Models: An 
Integrative Workflow for Decoding Stratigraphy and Facies 

in the Salta Basin, Argentina

6th Virtual Geoscience 
Conference

September 9-12, 2025, 
Lausanne, Switzerland

Optimising Facies Interpretation Using Neural Networks on 
Images and Photogrammetric Data: A Case Study from Salta 

(Argentina)
 

1.4. Associated Scientific Production 

1.4.1. Peer-reviewed Publications 
• Roemers-Oliveira, E., Fournier, F., Viseur, S., Raja Gabaglia, G.P., Fleury, J., Rinalducci, 

V., Guihou, A., Marié, L., Guadagnin, F., Deschamps, P., Tonetto, A., 2024a. The 
anatomy and stacking pattern of palustrine-dominated carbonate sequences from the 
Cengle Plateau, Paleocene, SE France: A multi-scalar approach. Sedimentary Geology 
470, 106690. https://doi.org/10.1016/j.sedgeo.2024.106690 
 

• Guadagnin, F., Gonçalves, Í.G., Roemers-Oliveira, E., Guedes, P.L., de Souza, E.G., 
Silveira, M. de M.L., Raja Gabaglia, G.P., Arienti Gonçalves, L., Oliveira, L.F.R. de, 
Selk, R., 2025. Building of classified 3D point clouds of outcrop with automatically 
segmented images. Geodata and AI 4, 100024. https://doi.org/10.1016/j.geoai.2025.100024 
 

• Roemers-Oliveira, E., Viseur, S., Fournier, F., Gonçalves, Í.G., Guadagnin, F., Raja 
Gabaglia, G.P., Bento Freire, E., Fragoso, D.G.C., Hernández, J., Freccia, A.C., de Godoy 
Rangel, G., 2025. Advanced digital techniques applied to outcrop models: Integrating 
Local Binary Pattern (LBP) and Convolutional Neural Network (CNN) to support 
stratigraphic and sedimentological interpretation of reservoir analogs in the Salta Basin, 
Argentina. Marine and Petroleum Geology. https://doi.org/10.1016/ 

1.4.2. Conference Contributions 

• Roemers-Oliveira, E., Fournier, F., Viseur, S., Raja Gabaglia, G.P., 2023a. Anatomy and 
stacking pattern of palustrine-dominated carbonate parasequences (Thanetian-Ypresian, 
SE France): insights from carbonate petrography associated with aerial photogrammetry, 
in: 36th International Meeting of Sedimentology. IAS, Dubrovnik, p. 44. 
 

• Roemers-Oliveira, E., Viseur, S., Fournier, F., Raja Gabaglia, G.P., Bento Freire, E., 
2023b. Depositional context of the Balbuena III Sequence (Maastrichtian/Danian) in the 
Salta Basin, Argentina: integrated approach from sedimentological, stratigraphical and 
digital outcrop models, in: 17th Bathurst Meeting-International Meeting of Carbonate 
Sedimentologists. Naples, p. 89. 
 

https://doi.org/10.1016/j.geoai.2025.100024
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• Roemers-Oliveira, E., Fournier, F., Viseur, S., Raja Gabaglia, G.P., Fleury, J., Rinalducci, 
V., Guihou, A., Marié, L., Guadagnin, F., Deschamps, P., Tonetto, A., 2024b. Anatomy 
and stacking pattern of palustrine-dominated carbonates from 'La Barre du Cengle", 
Paleocene, SE France, in: 31e Congrès de L’ED251. Aix-en-Provence. 
 

• Roemers-Oliveira, E., Viseur, S., Gomes-Gonçalves, Í., Guadagnin, F., Marchini, J., 
Rangel, G., Raja Gabaglia, G.P., Fournier, F., 2025b. Reading rock record through digital 
outcrop models: An integrative workflow for decoding stratigraphy and facies in the Salta 
Basin, Argentina, in: 6th Virtual Geoscience Conference. Lausanne, pp. 89–90. 
 

• Marchini, J., Roemers-Oliveira, E., Viseur, S., Gomes-Gonçalves, I., Guadagnin, F., 
Freccia, A.C., Rangel, G., Raja Gabaglia, G.P., Fournier, F., 2025. Optimising facies 
interpretation using neural networks on images and photogrammetric data: A case study 
from Salta (Argentina), in: 6th Virtual Geoscience Conference. Lausanne, pp. 68–69. 

1.4.3. Master Student Supervisions 

• Master 1 – D’ANGELO Lorenzo, 2024. Interprétation de faciès par analyse linéaire 
discriminante à partir de mesures hyperspectrales : Le cas d’étude de Salta (Argentine). 
 

• Master 2 – MARCHINI Jérémy, 2024. Facies Interpretation Using Neural Networks 
from Images and Photogrammetric Data: The Case Study of Salta (Argentina). 
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2.1. Geological Setting 
This section summarizes the main geological features and provides the regional geological 

context of the two study areas addressed in this thesis: the Arc Basin in southeastern France, 
where the Cengle Plateau outcrop is located, and the Salta Basin in northwestern Argentina, 
which includes outcrops of the Balbuena III Sequence. 

2.1.1. Arc Basin (SE France) 
The Arc Basin (Fig. 2.1), covering approximately 1,600 km², constitutes the largest syncline 

in the Provence region (Westphal and Durand, 1990). It preserves a continental sedimentary 
record spanning from the Upper Cretaceous (Late Santonian) to the Middle Eocene (Lutetian) 
(Durand and Tempier, 1968). Geographically, the basin forms an east–west elongated 
depression bounded by well-defined Provençal massifs and structural highs. The north includes 
Saint-Chamas and La Fare, the Eguilles hills, and Montagne Sainte-Victoire; the south, La 
Nerthe and L’Étoile with Regagnas, Olympe, and Aurélien. The Plateau d’Ollière marks the 
east, and the Étang de Berre the western outlet, where the Arc River drains into the lagoon 
(Durand and Guieu, 1980). The hydrographic network is organized around the Arc River, which 
flows westward, while the Durance River captures part of the northern hinterland. This 
physiography shows the control of surrounding uplifts on basin confinement and sediment 
distribution (Leleu et al., 2009). 

Based on the geographical and structural characteristics of the region, the Arc Basin can be 
subdivided into two sectors (Leleu, 2005): (i) the Gardanne Basin to the east, bounded to the 
north by Montagne Sainte-Victoire and to the south by Mont Aurélien, the Étoile Massif, and 
the Regagnas Dome, with the Plateau d’Ollières marking its eastern limit; and (ii) the Aix-en-
Provence Basin to the west, opening toward the Étang de Berre, bounded to the south by the 
Nerthe Massif and to the north by the Saint-Chamas chain. Although this study refers to the Arc 
Basin without distinction between its internal subdivisions, it is worth noting that the study 
area, the Cengle Plateau, is located within the sector commonly referred to as the Aix-en-
Provence Basin. This nomenclature appears in the literature (e.g., Durand, 1963; Cojan et al., 
2000; Cojan and Moreau, 2006), where the term Aix-en-Provence Basin is used to refer to the 
areas that include the studied site. 

The Cengle Plateau (Fig. 2.2) lies within this regional framework in the Provence region of 
southeastern France, immediately south of Montagne Sainte-Victoire and approximately 15 km 
east of Aix-en-Provence. The plateau has an elliptical shape, measuring about 7 km in length 
(east–west) and 2 km across, with an average altitude of 500 m. In its central portion, an 
elongated elevation reaches ~600 m. The cliff exposes 20–35 m of lacustrine–palustrine 
limestones belonging to the “Calcaire de Saint-Marc” Formation, part of the Arc Basin 
stratigraphy, which will be detailed later.
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Fig. 2.1. Simplified geological map of the Arc Basin (1:250,000), modified from Rouire (1979) after Leleu (2005). The red star indicates the location of the Cengle 

Plateau.



28 
 

 
Fig. 2.2. Panoramic view of the Cengle Plateau taken from the south, looking northward, with Montagne 

Sainte-Victoire in the background. Photograph by Georges Flayols (courtesy). 

2.1.1.1. Structural Geology and Geotectonic Evolution 
The onset of deposition in the Arc Basin took place during the Late Santonian, a time when 

sedimentary environments in Provence were undergoing a major transition. Until then, the 
southern part of the region had been dominated by marine sedimentation linked to the South-
Provence Basin (Tortosa and Leleu, 2020 and references therein). A long-lasting marine 
transgression, active from the Early to Middle Cenomanian, continued to influence the area 
until the Late Santonian (Floquet, 2020). It was during this interval that compressional 
Pyrenean-Provençal tectonics induced uplift of the South-Provence Basin, leading to the 
development of lagoonal deposits that represent the final phase of its marine record (Tortosa 
and Leleu, 2020). Following the latest Santonian, the development of the Arc Basin syncline 
generated accommodation space that facilitated subsequent continental sedimentation (Cojan 
and Moreau, 2006). 

Throughout the Upper Cretaceous to the Middle Eocene, the Arc Basin underwent 
continuous subsidence that allowed the accumulation of more than 2,000 m of continental 
deposits (Cojan, 1993), beginning in the Campanian (Durand, 1984). Despite the long duration 
of this interval, the basin paleogeography remained relatively stable (Cojan and Moreau, 2006). 
The sedimentary record consists of successions ranging from braided fluvial systems on silty 
floodplains to shallow lacustrine carbonates (Durand, 1984; Cojan, 1993). 

Structural reorganizations in the Arc Basin are recorded by discontinuities and hiatuses 
within the sedimentary succession that can be directly attributed to synsedimentary tectonics. 
Cojan et al. (2000) emphasized that accommodation was not created uniformly but reflected 
periodic tectonic readjustments, leading to the local preservation of thicker successions in 
depocenters while uplifted zones record stratigraphic gaps or condensed sections. This pattern 
illustrates the alternation between phases of tectonic activity, which generated depocenters and 
uplifted source areas, and intervals of relative quiescence, when relief was subdued and 
sediment supply diminished (Cojan, 1993). 

Within this framework, synsedimentary faulting played a central role in shaping both 
accommodation space and drainage organization. East–west faults defined the main 
depositional axes, whereas NNE–SSW faults controlled lateral facies variability and localized 
subsidence (Cojan, 1993; Cojan and Moreau, 2006). Regionally, this structural framework was 
reinforced by thrust contacts that marked the transition between the Mesozoic substratum and 
the Cretaceous–Paleogene cover (Leleu et al., 2009). These tectonic controls promoted a 
heterogeneous distribution of depositional environments, with coarse-grained alluvial fans 
developing along uplifted margins and interfingering with finer-grained floodplain and 
lacustrine–palustrine facies in central depressions. In stratigraphic terms, this interplay is 
expressed by lateral transitions from conglomeratic belts of Campanian–Maastrichtian and 
Paleocene age at the basin margins to lacustrine successions in the depocenters, reflecting the 
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diachronous nature of facies boundaries (Leleu et al., 2009). Although not the focus of this 
study, alluvial fans are important geomorphic markers of tectonic pulses and highlight the 
connectivity between proximal and distal depositional systems. 

As highlighted by Tortosa and Leleu (2020) and Leleu and Tortosa (2020), the Pyrenean-
Provençal orogeny was the main factor influencing tectonic and sedimentary evolution 
throughout the history of the Arc Basin. First, the deep reactivation of Triassic evaporite 
detachments triggered thrusting and deformation of the post-Triassic succession, producing the 
first reliefs in the region. This tectonic framework established the conditions for a continental 
marshy basin during the Late Santonian to Early Campanian, bounded by uplifted margins with 
only moderate relief (Tortosa and Leleu, 2020). These early deformations strongly conditioned 
sedimentation by creating depocenters where accommodation was concentrated and by 
supplying detrital material from uplifted source areas. 

From the Middle Campanian onward, tectonic activity intensified, marking an important 
pulse of the Pyrenean-Provençal orogeny (Tortosa and Leleu, 2020). The main depocenter 
progressively shifted westward toward the Vitrolles area, while sedimentation decreased along 
the basin margins. At the same time, localized thrusting and folding produced tectonically active 
paleoreliefs, such as the so-called paleo-Regagnas, paleo-Étoile, and paleo-Sainte-Victoire. 
These structures, although not directly equivalent to the modern mountain ranges, occupied the 
same geographic sectors and were subject to intense erosion. Their dismantling generated 
coarse breccia deposits during the Late Campanian, which accumulated at the foot of these 
reliefs (Tortosa and Leleu, 2020). This period of tectonic activity was followed, in the latest 
Campanian to earliest Maastrichtian, by a phase of quiescence. Widespread lacustrine 
sedimentation sealed the Sainte-Victoire breccias, marking a phase of tectonic tranquility that 
interrupted sediment supply from the previously uplifted reliefs. Subsequent Maastrichtian 
sedimentation, represented by the Upper Rognacian facies (dominated by lacustrine and 
palustrine carbonates), continued without breccia deposition, reflecting this more stable 
tectonic context. 

During the Paleogene and Eocene, the basin continued to record exclusively continental 
environments, including terrestrial, fluvial, lacustrine, and palustrine facies (Leleu and Tortosa, 
2020). The main deformation of Provence, corresponding to the emplacement of the Sainte-
Baume nappe and major thrust sheets, is conventionally attributed to the Bartonian, 
representing the peak of Pyrenean-Provençal tectonics. Between the Late Cretaceous breccia 
events and this principal deformation, another tectonic phase is recorded along the northern 
margin of the Arc Basin. The Dano–Selandian breccias of Montagne Sainte-Victoire, associated 
with renewed erosion and the development of alluvial fans at the mountain front (Leleu, 2005), 
testify to this intermediate deformation and further highlight the alternation between tectonic 
activity and quiescence that characterizes the basin’s evolution. 

2.1.1.2. Stratigraphy 
Stratigraphically, the successions of the Arc Basin were first classified into a series of local 

stages (e.g., Valdonnian, Fuvelian, Bégudian, Rognacian, and Vitrollian) defined from 
stratotypes at their respective type localities (Matheron, 1878; Villot, 1883; Babinot and 
Durand, 1980). Each stage was characterized by facies composed of alternating limestones, 
sandstones, and claystones, identified on the basis of their lithological attributes and fossil 
content. However, these local stages are no longer formally employed in stratigraphy, except 
occasionally by paleontologists working on highly localized studies (Tortosa and Leleu, 2020). 
In practice, they essentially represent facies units whose lithological similarity may mask 
chronological differences: depositional environments of different ages can appear 
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contemporaneous, while comparable facies may in fact be diachronous. The associated fossil 
assemblages help refine paleoenvironmental interpretations but do not resolve these 
uncertainties. Despite these limitations, the local stages laid the foundation for the present 
chrono-lithostratigraphic framework of the basin. Later studies (Durand, 1984; Cojan et al., 
2000; Cojan and Moreau, 2006) correlated them with international marine stages, relying on 
biostratigraphic evidence, carbon-isotope stratigraphy, and paleomagnetic data. In the current 
framework (Fig. 2.3), as summarized by Cojan et al. (2000) and Tortosa and Leleu (2020), the 
principal limestone intervals are regarded as the main lithostratigraphic units of the basin. 

The stratigraphic succession is therefore presented below through a synthesis of the main 
units, from the Valdonnian to the Lutetian, with age correlations to the international time scale 
shown in Fig. 2.3. The descriptions are primarily based on Tortosa and Leleu (2020) for the 
Upper Cretaceous succession, and on Leleu and Tortosa (2020) for the Paleogene units, while 
other references are cited where appropriate to provide further detail and context. 

Valdonnian–Fuvelian 
From a biostratigraphic perspective, Babinot and Durand (1980) demonstrated that the 

Valdonnian and Fuvelian cannot be clearly differentiated, as they share broadly similar faunal 
assemblages. For this reason, the two are often grouped into a Valdo–Fuvelian unit, although 
they are still presented separately for clarity. 

The Valdonnian deposits display significant lateral and vertical variability across the Arc 
Basin. In the central part of the basin, thicknesses may reach 70 m, with basal reddish clays 
containing sandstone lenses overlain by white to gray marls and lacustrine limestones rich in 
charophytes and locally with pisoids. Toward the upper part of the succession, floodplain and 
palustrine deposits become dominant, recording swampy environments rich in mollusks and 
freshwater vertebrates such as turtles and crocodiles. In the southern and western margins, the 
unit may exceed 100 m, including alternations of marls, marly limestones, lignitic layers, and 
occasional sandstones or microconglomerates. 

The Fuvelian succession is equally heterogeneous. North of the Étang de Berre, the facies 
are mainly fluvial, characterized by sandstones and clays, while near the foothills of Sainte-
Victoire lacustrine and delta-lacustrine deposits dominate. Toward the eastern sector, near Trets, 
the deposits return to more fluvial settings. Thicknesses range from 120 to more than 250 m 
depending on location. In several areas, lignite horizons and highly fossiliferous marls are 
preserved, yielding abundant gastropods, bivalves, charophytes, pollen, and vertebrate remains, 
including crocodiles, turtles, and dinosaurs. The lignites of the Fuvelian were mined in 
underground galleries until 2003, making the Arc Basin the seventh most important coalfield in 
France in terms of production. 

These successions record the establishment of a vast marshy system with interconnected 
lakes that expanded and contracted through time. The absence of mature paleosols and 
pedogenic features suggests relatively persistent water levels, limiting vegetation to lake 
margins but favoring the accumulation of organic matter in basin interiors. The abundant 
macro- and microflora, including ferns, conifers, palms, and angiosperms, indicate a warm and 
humid tropical climate. Taken together, the Valdonnian and Fuvelian illustrate the interplay 
between fluvial input and lacustrine development, reinforcing their interpretation as closely 
related depositional stages best understood within a unified Valdo–Fuvelian framework. 
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Fig. 2.3. Chronostratigraphic chart of the Arc Basin after Cojan et al. (2000) and Tortosa and Leleu 

(2020). 

Bégudian and Rognacian 
In the same way as the preceding stages, the Bégudian and Rognacian are closely related 

and often difficult to separate. From a biostratigraphic standpoint, Babinot and Durand (1980) 
demonstrated that they cannot be clearly differentiated, as they share broadly similar molluscan 
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assemblages with only minor floristic differences. For this reason, they are sometimes grouped 
into a single Bégudo–Rognacian unit, although they are presented separately here for clarity. 
The distinction is further supported by tectonic evidence, since a regional phase of deformation 
in the eastern Arc Basin produced a stratigraphic unconformity between the Fuvelian and the 
overlying Bégudian deposits. 

The Bégudian succession is typically composed of alternating marls, sandstones, and 
lacustrine carbonates, which display significant lateral variability across the basin. In the 
Fuveau area, the unit includes marls and limestones with charophytes, pisolitic horizons with 
unionid bivalves, and interbedded sandstones and reddish clays. To the east and southwest, 
conglomerates and breccias testify to syntectonic alluvial fan systems, whereas in the western 
sectors the succession thickens to several hundred meters and becomes dominated by fluvio–
deltaic deposits with local lacustrine intervals. This variability reflects contrasting sediment 
sources and subsidence regimes throughout the basin. 

The Rognacian is generally characterized by alternations of red and variegated clays, 
sandstones, and lacustrine limestones. In its type area around Rognac and Vitrolles, the 
succession begins with red clays overlain by lacustrine carbonates known as the “Calcaire de 
Rognac” (‘Calcaire de Rognac’ Formation, Cojan et al., 2000). These carbonates, up to 30 m 
thick, are rich in charophytes and display nodular and palustrine features. Biostratigraphic 
studies have shown that these limestones are diachronous: the carbonates of Rognac and 
Vitrolles are Maastrichtian in age, whereas equivalent deposits at Rousset belong to the late 
Campanian (Garcia and Vianey-Liaud, 2001). The upper part of the Rognacian is marked by 
the conglomeratic “Poudingue de la Galante”, a 2–4 m thick unit composed of polymictic lithic 
clasts. Well exposed in the Vitrolles area and at the base of Montagne Sainte-Victoire, it has 
been interpreted as the lateral equivalent of sandstone lenses at the same stratigraphic level in 
the Rognac sector. Stratigraphically, it occupies the uppermost Maastrichtian and directly 
underlies the Calcaire de Vitrolles, providing a reliable regional marker horizon. Its significance 
is further emphasized by the fact that the Cretaceous/Paleogene (K/Pg) boundary is positioned 
immediately above this unit, identified in the Arc Basin by a pronounced negative δ¹³C 
excursion (Cojan et al., 2000). 

Paleoenvironmental reconstructions indicate that the Bégudian and lower Rognacian 
correspond to the development of the “Paleo-Arc River”, a major fluvial system that drained 
adjacent reliefs and terminated in shallow lakes (Cojan et al., 2003). Floodplain deposits and 
abundant fossil eggs document the coexistence of soils, seasonal overbank sedimentation, and 
dinosaur nesting grounds. From the Late Campanian to Early Maastrichtian, these fluvial 
systems gave way to more extensive lacustrine environments, represented by carbonate 
successions such as the Calcaire de Rognac. Toward the end of the Maastrichtian, increasing 
aridity led to a contraction of lake areas and culminated in the deposition of the Poudingue de 
la Galante, immediately below the K/Pg boundary, marking the transition to the Paleogene 
succession (Cojan and Moreau, 2006). 

Vitrollian (Calcaire de Vitrolles) 
The Paleocene succession in Provence is dominated by red siltstones, occasionally 

interbedded with continental carbonates expressed as paleosols or lacustrine–palustrine 
limestone beds, and locally by thick breccia lobes. Within this context, the palustrine “Calcaire 
de Vitrolles” (‘Calcaire de Vitrolles’ Formation, Cojan et al., 2000), originally defined as the 
Vitrollian Stage (Matheron, 1878), constitutes the most characteristic unit of the interval. These 
limestones are typically mottled and multicolored (pink, red, yellow, gray, or whitish), 
displaying abundant root traces and burrows, and were historically exploited as decorative 
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“false marble”. The formation is particularly prominent between Ventabren and Pennes-
Mirabeau, where it reaches ~50 m in thickness, and extends more discontinuously toward 
Meyreuil and the northeastern margin of the Cengle Plateau. This distribution provides insight 
into the paleogeography of the so-called “Vitrolles paleolake”. 

At the base of Montagne Sainte-Victoire, the unit is overlain by thick breccias enriched in 
microcodium, which rest unconformably on Upper Jurassic strata. Above, the succession 
consists of up to 100 m of red marls interbedded with conglomerates and breccias, sometimes 
steeply tilted or overturned, as observed between Beaurecueil and Saint-Antonin-sur-Bayon. 
Fossil content is sparse and uncertain: the gastropods Physa montensis and Physa prisca have 
been reported, but their stratigraphic significance remains questionable. 

Regionally, facies variations are observed. In the Coudoux area, Vitrollian deposits locally 
include siliceous travertines, whereas in the Rians Basin, the interval is represented by ~50 m 
of wine-colored mudstones with lenses of mottled breccias. In the Alpilles sector, limestones 
with microcodium crusts overlie red continental mudstones, which themselves rest on the 
Calcaire de Rognac. These red mudstones are sometimes mapped as Vitrollian, although their 
exact age (Maastrichtian or Paleocene) remains unresolved. 

Paleoenvironmental reconstructions indicate alternating palustrine–lacustrine limestones 
and fluvial argillaceous–arenaceous deposits, similar to those of the Upper Cretaceous. Fossil 
assemblages, mainly charophytes and mollusks, provide the main criteria for distinguishing 
these environments, although the record remains relatively sparse. 

Thanetian (Calcaires de Meyreuil) 
The Thanetian succession in Provence is primarily represented by the “Calcaires de 

Meyreuil” (‘Calcaire de Meyreuil’ Formation, Cojan et al., 2000), which have yielded a diverse 
molluscan fauna including Physa prisca and Limnaeact rollandi. The overlying clays, locally 
reaching up to 100 m in thickness, contain charophytes and thin eggshell fragments attributed 
to Ornitholithus biroi, possibly belonging to gastornithids or ratites (Feist-Castel, 1975; Dughi 
and Sirugue, 1968; Buffetaut and Angst, 2014). These records document the early Paleocene 
reappearance of large terrestrial vertebrates in the fossil record, following the extinction of non-
avian dinosaurs at the K/Pg boundary. 

Regionally, facies expressions vary. Around the Étang de Berre, lenticular lacustrine 
limestones of probable Thanetian age are locally silicified and associated with smectite- and 
attapulgite-bearing marls. South of Ventabren, similar red clays overlie silicified limestones and 
may contain thin breccia lenses. In the Réaltor sector, between Vitrolles and Aix-en-Provence, 
the upper part of the succession comprises alternating limestones and marls known as the 
“Calcaires et Marnes du Réaltor et du Grand Arbois”. This interval is fossiliferous, with Physa 
prisca, charophytes, and microcodium. Thickness varies significantly: while limestones 
measure ~10 m in the southern cliffs, they expand considerably in the gorges of the Arc River 
at Roquefavour and across the central Arbois Plateau, thinning laterally into wedges toward the 
basin margins. 

Other occurrences are more fragmentary. In the Saint-Rémy-de-Provence area, ~10 m of 
gravels and red marls are tentatively assigned to the Thanetian, though lacking diagnostic 
fossils. In the Rians Basin, the unit is represented by ~110 m of bright red clays with quartz 
grains, interbedded with multicolored breccia lenses containing Jurassic limestone clasts. Its 
basal part comprises a silicified lacustrine limestone bed up to 3 m thick. 

Paleoenvironmental reconstructions indicate that Thanetian environments alternated 
between lacustrine and fluvial episodes, continuing the patterns already established in earlier 
Paleocene successions. 
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Lower Ypresian (Calcaires de Saint-Marc) 
Overlying the Thanetian red clays, the “Calcaires de Saint-Marc” (‘Calcaire de Saint-Marc’ 

Formation, Cojan et al., 2000), formerly referred to the Sparnacian (Lower Ypresian), are now 
assigned to the upper Thanetian–Ypresian transition. This lacustrine formation is particularly 
rich in charophytes, microcodium debris, and gastropods such as Limnaea longissima, Physa 
draparnaudi, Physa columnaris, and Planorbis sparnensis. Thick avian eggshells 
(Ornitholithus arcuatus), probably belonging to large gastornithids such as Gastornis 
(=Diatryma), have also been documented based on theoretical egg volume estimations (Dughi 
and Sirugue, 1968; Buffetaut and Angst, 2014). The limestones are overlain by 20–60 m of red 
marls containing lenses of fluvial conglomerates, which have also yielded fragments of thick 
avian eggshells. Together, these limestones and marls form the Petit Arbois Plateau (eastern 
Réaltor Basin) and the hills south of Calas. 

Paleoenvironmental interpretations indicate the persistence of lacustrine settings at the 
transition between the Paleocene and Eocene, with adjacent floodplain systems contributing 
terrigenous sediments. The association of charophytes, gastropods, and avian eggshells reflects 
the ecological diversity of these shallow-water and marginal environments, while the 
occurrence of fluvial conglomerates records episodic high-energy influxes into the basin. 
Magnetostratigraphic and chemostratigraphic analyses (Cojan et al., 2000) identified the 
Paleocene–Eocene Thermal Maximum (PETM) within the Saint-Marc Limestone – the most 
rapid and intense warming event of the Cenozoic – characterized by a temperature increase 
exceeding 6 °C over approximately 20 kyr (e.g., Kirtland Turner et al., 2017). 

Note on the Barre du Cengle 
The “Calcaire du Cengle” is considered part of the same lithostratigraphic unit as the 

“Calcaire de Saint-Marc”. This correlation, already recognized by Matheron (1868, cited in 
Dughi and Sirugue, 1968), based on the consistency of the limestone–marl alternations 
overlying the “Calcaire de Vitrolles”. On the left bank of the Arc River, the succession from 
base to top comprises: “Calcaire de Vitrolles”, red marls, “Calcaire de Meyreuil”, red marls, 
and “Calcaire de Saint-Marc”, overlain by red marls. On the western slope of the Cengle 
Plateau, the equivalent succession is: “Calcaire de Vitrolles”, red marls, “Calcaire de 
Beaurecueil”, red marls, and “Calcaire du Cengle”, overlain by red marls. In this study, the 
expression “Calcaire du Cengle” (or Cengle limestone) is used with a geographical connotation, 
while the corresponding lithostratigraphic unit is referred to as the “Calcaire de Saint-Marc” 
Formation, following Corroy and Touraine (1961) and Cojan et al. (2000). 

In the Cengle Plateau region (Fig. 2.4), lacustrine limestones are interbedded with reddish 
marls and mudstones deposited in floodplain environments. The main limestone intervals are 
represented by the “Calcaire de Rognac”, “Calcaire de Vitrolles”, and “Calcaires de Saint-
Marc” (Durand and Tempier, 1968). Above the Cengle cliff, reddish marls from floodplain 
deposits form the plateau top (Durand, 1963). 

The Cengle limestones have yielded a variety of fossils, including charophyte fragments, 
bivalve and gastropod mollusks, ostracods, and microcodium debris (Durand, 1963). Bivalves 
(Durand, 1963) and gastropods such as Physa prisca, Physa columnaris, Succinea 
sparnacensis, and Planorbis sparnacensis have been identified (Feist-Castel, 1975; Durand, 
1984). Charophytes such as Sphaerochara edda were described in the lower part of the Calcaire 
de Saint-Marc Formation (Arc Valley region; Feist-Castel, 1975), leading to the assignment of 
an Upper Thanetian age to the base of the unit.
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Fig. 2.4. Simplified N–S stratigraphic section of formations and facies in the Cengle Plateau region (modified after Durand and Tempier, 1968).
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Provence is internationally renowned for its fossil eggshells, ranging from dinosaur remains 
in the Campanian and Maastrichtian successions to giant bird eggshells in Paleocene and 
Eocene deposits, also recorded in the Cengle Plateau. Below the Cengle limestones, thin 
eggshells of Ornitholithus biroi have been documented, while the marly intervals at the top of 
the plateau contain thick eggshells of Ornitholithus arcuatus (Durand, 1984; Angst et al., 2015). 

Lower Ypresian (Calcaires de Langesse) 
The “Calcaires de Langesse” (‘Calcaire de Langesse’ Formation, Cojan et al., 2000), 

formerly dated to the Lower Lutetian, are now placed within the Lower Ypresian. This 
lacustrine limestone unit, 30–40 m thick in the Arc Basin, has yielded abundant charophytes, 
Microcodium debris, and gastropods such as Physa columnaris. Near the locality of Palette, a 
clay–lignite horizon within the unit has provided numerous vertebrate remains, including 
mammals, turtles, crocodilians, and birds, making it one of the most fossiliferous levels of the 
Lower Eocene succession in Provence. In the Rians syncline, the Ypresian interval is 
represented by micaceous sands and limestones with Bithynia, ranging from 50 to 350 m in 
thickness. To the northwest, in the Orgon sector, the Eocene succession is composed of ~30 m 
of reddish sands and clays. 

Paleoenvironmental interpretations indicate that the “Calcaire de Langesse” formed within 
shallow lacustrine systems developed during a humid climatic phase of the early Eocene. 
Lignitic horizons record floodplain environments, while associated vertebrate faunas, including 
the Palette locality (~56 Ma), document the onset of mammalian diversification in Provence. 
The distinct composition of these faunas compared to northern France and Britain highlights a 
paleobiogeographic differentiation, likely linked to the climatic perturbations of the PETM 
(Leleu and Tortosa, 2020). 

Upper Ypresian to Lower Lutetian (Calcaires du Montaiguet) 
Following a thin marl interval, the “Calcaires du Montaiguet” (‘Calcaire du Montaiguet’ 

Formation, Cojan et al., 2000) mark a major lacustrine limestone development assigned to the 
Upper Ypresian–Lower Lutetian. These white to light-gray limestones are rich in charophytes, 
stromatolites, microcodium, and gastropods such as Planorbis pseudoammonius, Limnaea 
aquensis, and Bulimus hopei. In the Milles area, the unit reaches up to 50 m in thickness. 
Comparable lacustrine deposits occur in the northwestern part of the département: compact 
white limestones with flint, up to 25 m thick, exposed at Mallemort, Eygalières, and Orgon, 
have yielded Amphidromus hopei and Rillya matheroni and are also assigned to the Lutetian. 

Regionally, other lithostratigraphic equivalents include the “Calcaires de Cuques”, ~60 m 
thick, composed of whitish to gray limestones rich in gastropods such as Planorbis 
pseudoammonius, Limnaea sp., and Strophosoma golfieri. Their base is obscured by Quaternary 
alluvium of the Arc Valley, preventing direct correlation with the Calcaires du Montaiguet. In 
the Orgon sector, the “Calcaires d’Eygalières” form a continuous cuesta, consisting of up to 30 
m of palustrine–lacustrine facies. These include nodular limestones with root traces and 
burrows, clayey limestones with strong nodular features, and flint-bearing lacustrine intervals. 
The molluscan fauna is diverse, including species typically Lutetian such as Helix eygalierensis, 
Romanella hopei, Rillya matheroni, Filholia subcylindrica, Rillya gibba, and Galba michelini. 

In the Maussane syncline, the Lutetian is represented by white tufaceous limestones, often 
fetid and locally silicified, as well as reddish breccias cemented by calcareous–siliceous 
matrices. Collectively, these formations illustrate a widespread lacustrine expansion during the 
Upper Ypresian–Lower Lutetian, alternating with floodplain and palustrine environments. 
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2.1.2. Salta Basin (NW Argentina) 
The Salta Group Basin (Turner, 1958), more commonly referred to as the Salta Basin 

(Marquillas et al., 2005), occupies a broad area of northwestern Argentina, where nearly 70% 
of its extent lies, as well as parts of southern Bolivia and western Paraguay, covering ~150,000 
km² (Del Papa and Salfity, 1999). Its sedimentary fill, up to 5,000 m thick (Marquillas et al., 
2005), records the development of an intracontinental rift within the South American plate, 
initiated during the breakup of Gondwana in the Patagonian orogenic cycle (Keidel, 1921; 
Bianucci and Homovc, 1982). Rifting began in the Cretaceous and persisted until the late 
Eocene, when the onset of Andean orogenesis replaced extensional tectonics by compressional 
regimes (Hernández and Echavarria, 2009). Structurally, the basin is subdivided into seven sub-
basins (Marquillas et al., 2005): Tres Cruces, Lomas de Olmedo, Metán, Alemanía (Reyes, 
1972; Salfity, 1982), El Rey (Salfity, 1980), Sey (Schwab, 1984), and Brealito (Sabino, 2002). 
For simplification, the basin is grouped into four broader sub-units: Lomas de Olmedo in the 
east, Sey in the west, Tres Cruces in the north, and Metán–Alemanía in the south (Fig. 2.5). The 
southernmost sub-basin, Metán–Alemanía, constitutes the focus of the present study. 

 
Fig. 2.5. Location map of the Salta Basin and its sub-basins, showing isopach contours of the Yacoraite 

Formation (modified from Roemers-Oliveira et al., 2015 after Bento Freire, 2012). The blue circle 
marks the studied sub-basin. 

The history of geological knowledge in the region is closely tied to hydrocarbon exploration. 
The earliest written accounts of oil seeps date back to the mid-17th century, reported by 
Franciscan missionaries in Tarija (Dorfman, 1942). Systematic exploration began in the early 
20th century, led by the state company YPF, which identified minor non-commercial oil 
accumulations (Disalvo, 2002). The first commercial discovery was made in the Lomas de 
Olmedo Sub-basin in the late 1940s, targeting fractured and karstified carbonates of the 
Yacoraite Formation (Maastrichtian–Danian). Production peaked at ~50,000 barrels per day 
during the 1970s (Disalvo, 2002), and wells drilled exceeded 5,000 m in measured depth. 

This breakthrough highlighted the petroleum potential of the Yacoraite reservoirs and 
directed subsequent studies toward the Metán–Alemanía Sub-basin, where continuous and 
well-exposed outcrops provided an exceptional opportunity for detailed stratigraphic and 
paleoenvironmental analyses. Seminal contributions include Hernández et al. (1999), Sial et al. 
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(2001), Disalvo et al. (2002), Marquillas et al. (2003, 2005, 2007), and Hernández et al. (2008). 
More recent high-resolution stratigraphic studies expanded this framework, including those of 
Bento Freire (2012), Gomes (2013), Pedrinha (2014), Roemers-Oliveira (2014), Pedrinha et al. 
(2015), Roemers-Oliveira et al. (2015), Bunevich (2016), Bunevich et al. (2017), Deschamps 
et al. (2020), Gomes et al. (2020), Villafañe et al. (2022), Ceolin et al. (2022), Oliveira Santos 
et al. (2023), and Fragoso (2023). Complementary detailed analyses have also been conducted 
in the Tres Cruces Sub-basin (e.g., Mutti et al., 2023; Vallati et al., 2023). 

2.1.2.1. Structural Geology and Geotectonic Evolution 
The geotectonic evolution of the Salta Basin is complex, reflecting the influence of several 

orogenic cycles from the Cretaceous to the compressional regime of the Andean orogeny in the 
Eocene (Hernández and Echavarria, 2009). The basin originated as an intracontinental rift 
during the Cretaceous (Bianucci and Homovc, 1982), linked to the breakup of Gondwana and 
the opening of the South Atlantic, a process related to the Patagonian orogenic cycle. Its 
evolution was marked by two main stages, rift and post-rift (sag), each associated with distinct 
subsidence mechanisms and depositional architectures. 

The rift stage was characterized by crustal extension during the Cretaceous, producing 
sedimentary fills exceeding 4,000 m in thickness Marquillas et al. (2005). According to 
Hernández et al. (1999), these deposits rest unconformably on the basin basement. Ramos 
(1988) argued that rifting was controlled by inherited structural lineaments from Permian to 
Triassic/Jurassic paleo-rifts related to the Gondwanan orogenic cycle. These lineaments 
generated differential subsidence, producing internal highs locally referred to as “umbrais” 
(Comínguez and Ramos, 1995; Cristallini et al., 1997), generating sub-basins (Fig. 2.5). Among 
these, the Salta–Jujuy High acted as a central uplift, imparting a radial geometry to the basin, 
which was bounded externally by structural arches (Sabino, 2004). The Metán–Alemanía Sub-
basin, studied in this work, is confined by the Transpampeano–Púnico and Pampeano arches to 
the west/southwest and east/southeast, respectively. Within this framework, the Guachipas High 
separates the Metán and Alemanía depocenters. The wedge-shaped geometry of syn-rift 
successions further highlights the strong tectonic control on accommodation (Hernández et al., 
1999). 

The post-rift (sag) stage began in the Maastrichtian with a significant decrease in subsidence 
rates and reduced sediment supply from the basin margins. This stage was dominated by thermal 
subsidence (Del Papa and Salfity, 1999; Salfity and Marquillas, 1999), with sedimentation 
progressively covering structural highs and merging the sub-basins generated during the rift 
stage into a broad, shallow depression with tabular geometries. In the Metán–Alemanía Sub-
basin, for instance, north–south cross-sections illustrate the contrast between the thick rift infill 
and the thinner, more uniform sag deposits (Fig. 2.6A). East–west cross-sections further 
highlight the tabular, unfaulted geometry characteristic of the sag stage (Fig. 2.6B). Although 
the sag phase began in the Maastrichtian, the Salta–Jujuy High persisted as a positive feature 
until the late Danian, when it was finally onlapped (Gómez Omil and Boll, 1999, 2005).
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Fig. 2.6. Stratigraphic sections of the Metán–Alemanía Sub-basin. (A) North–south section showing rift deposits significantly thicker than those of the sag stage. (B) 

East–west section illustrating the tabular and unfaulted geometry of the sag stage. Modified from Hernández et al. (1999) after Bento Freire (2012).
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While several studies interpret this sag stage as a continuous evolution into the Eocene (e.g., 
Reyes and Salfity, 1973; Cristallini et al., 1997; Marquillas et al., 2005), others (e.g., Bianucci 
et al., 1981; Gómez Omil et al., 1989; Gómez Omil and Boll, 1999; Hernández et al., 1999) 
have documented a significant change in subsidence patterns during the Paleocene. This 
tectonic renewal, referred to as the Pre-Olmedo phase, represents a second rifting episode 
marked by a regional erosional unconformity and rejuvenated fluvial drainage, particularly 
along the margins of the Lomas de Olmedo Sub-basin. However, this phase did not generate 
depocenters comparable in thickness to those of the first rift stage, and its deposits were soon 
overlain by regionally extensive tabular strata, initiating a renewed sag stage that persisted into 
the Eocene. 

The final stage corresponds to the Andean orogeny or Andean cycle (Ramos, 1988). During 
this compressional phase, the basin evolved into a foreland system, undergoing deformation, 
inversion, folding, and fault reactivation (Hernández and Echavarria, 2009). According to 
Gómez Omil and Boll (1999), these structures generated hydrocarbon traps that remain 
important exploration targets. 

2.1.2.2. Stratigraphy 
The stratigraphy of the Salta Basin has been systematically studied since the late nineteenth 

century. The first comprehensive classification was proposed by Brackebusch (1891), who 
referred to the Cretaceous succession of the region as the Salta System. With the subsequent 
development of geological methods and concepts, Turner (1958) redefined this succession as 
the Salta Group, encompassing strata from the Cretaceous to the Paleogene in northwestern 
Argentina. 

In its traditional lithostratigraphic framework, the Salta Group is subdivided into three main 
subgroups (e.g., Gómez Omil and Boll, 2005; Marquillas et al., 2005): 

• the Pirgua Subgroup (Reyes and Salfity, 1973), composed of the La Yesera, Las 
Curtiembres, and Los Blanquitos formations; 

• the Balbuena Subgroup (Moreno, 1970), including the Lecho, Yacoraite, and 
Olmedo/Tunal formations. The Tunal Formation is regarded as a lateral equivalent of the 
Olmedo Formation in the Metán–Alemanía Sub-basin. These units are absent in the Tres 
Cruces and Sey sub-basins; and 

• the Santa Bárbara Subgroup (Moreno, 1970), which comprises the Mealla, Maíz Gordo, 
and Lumbrera formations. 

This lithostratigraphic arrangement has provided the basic nomenclatural framework that 
has guided regional studies for decades. However, with the development of sequence 
stratigraphy, alternative schemes emphasized the recognition of supersequences and sequences, 
bounded by unconformities and stratigraphic surfaces of regional significance (e.g., Bianucci 
et al., 1981; Gómez Omil and Boll, 1999; Hernández et al., 1999). In this approach, the Pirgua, 
Balbuena, Santa Bárbara, and Lumbrera units are treated as supersequences, each internally 
subdivided into sequences that reflect changes in accommodation and sediment supply. 

The comparison between the lithostratigraphic and sequence stratigraphic frameworks is 
shown in Fig. 2.7, which highlights their temporal correspondence. Fig. 2.8 further illustrates 
this duality in the Metán–Alemanía Sub-basin, showing a fault block in the Cabra Corral area 
with the formations identified according to the lithostratigraphic nomenclature on the left, and 
the equivalent sequence stratigraphic terminology on the right.
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Fig. 2.7. Stratigraphic framework of the Salta Basin, illustrating the correspondence between lithostratigraphic and sequence stratigraphic classifications. In both, the unit 

analysed in this study is highlighted.
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Fig. 2.8. Outcrop view of a fault block in the Metán–Alemanía Sub-basin, near the Cabra Corral reservoir (adapted from Bento Freire, 2012). The lithostratigraphic 

nomenclature is shown on the left, and the sequence stratigraphic nomenclature on the right. The red line on the top indicates the Cretaceous–Paleogene (K/Pg) 
boundary.
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The descriptions that follow are primarily based on Hernández et al. (1999), while additional 
references are incorporated where necessary to provide further detail and context. The 
chronostratigraphic nomenclature is consistent with the Geologic Time Scale of Gradstein et al. 
(2012). 

Pirgua Supersequence (Barremian to Campanian) 
The Pirgua Supersequence comprises predominantly continental clastic successions, ranging 

from proximal alluvial fan deposits to mudflat facies, with subordinate volcanic rocks occurring 
locally. Its basal boundary is defined by the regional unconformity that marks the onset of Salta 
Group deposition, whereas its top is delineated by an abrupt shift from alluvial fan systems to 
fluvial floodplain green shales. This unit displays the most restricted distribution within the 
Salta Group, being confined to sub-basins and small half-grabens controlled by rift-related 
faults (Gómez Omil et al., 1989). Internally, it is subdivided into two sequences, Pirgua I and 
Pirgua II. 

The Pirgua I Sequence, corresponding to the La Yesera Formation, records the progressive 
distalization of facies induced by tectonic reactivation, with transitions from coarse-grained 
alluvial fan deposits to fine-grained mudflat facies. Rapid tectonically driven subsidence 
created substantial accommodation, but sediment supply was insufficient to fully infill the 
available space. 

The Pirgua II Sequence, which includes the Las Curtiembres and Los Blanquitos formations, 
comprises successions grading from mudflats to distal alluvial fans, braided river systems, and 
terminal fans. Compared with the Pirgua I Sequence, it is more widely distributed, reflecting 
reduced structural compartmentalization and an increase in sediment transport efficiency. 

Balbuena Supersequence (Campanian to Danian) 

The Balbuena Supersequence corresponds to the post-rift (sag) phase of the Salta Basin and 
is typified by laterally extensive, tabular successions that may locally acquire wedge-shaped 
geometries. Its strata are laterally continuous and display well-developed cyclicity, interpreted 
as the combined result of eustatic fluctuations and climatic forcing (Boll and Hernández, 1985; 
Hernández et al., 1999). Correlations can be traced for tens of kilometers, underscoring the 
regional persistence of these deposits (e.g. Bento Freire, 2012; Pedrinha et al., 2015). 

This supersequence includes the clastic facies of the Lecho Formation and the lacustrine 
carbonates of the Yacoraite Formation. Marine influence has been reported in the Tres Cruces, 
Sey, and Lomas de Olmedo sub-basins, whereas in the Metán–Alemanía Sub-basin deposition 
remained essentially lacustrine (Bento Freire, 2012; Pedrinha, 2014; Roemers-Oliveira, 2014). 
Paleogeographic reconstructions at the K/Pg boundary (Fig. 2.9) indicate that northern sub-
basins were directly connected to a marine corridor from the north, while the Metán–Alemanía 
Sub-basin was only sporadically influenced during episodes of maximum lake expansion, when 
spillovers enabled temporary connections (Bento Freire, 2012). 

Its basal contact is defined by onlap relationships with the Pirgua Supersequence or older 
units, and its upper boundary is a regional unconformity related to the “Pre-Olmec tectonic 
phase.” The Yacoraite Formation is especially significant: fractured carbonates within this unit 
host the main hydrocarbon reservoirs of the basin and also contain uranium mineralization. 
Facies distribution across sub-basins is strongly controlled by structural highs and differential 
subsidence. In the Metán–Alemanía Sub-basin, these factors condition the siliciclastic–
carbonate transition. Facies distribution across sub-basins is strongly controlled by structural 
highs. In the Metán–Alemanía Sub-basin, siliciclastic input derived predominantly from the 
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west, while the Guachipas High acted as a physical barrier, trapping coarse siliciclastic deposits 
in the Alemanía sector. Consequently, carbonate sedimentation became more prominent in the 
Metán depocenter, as illustrated in Fig. 2.6B. 

 
Fig. 2.9. Paleogeographic reconstruction at the K/Pg boundary. A northern marine corridor influenced 

the Salta Basin, while the southern Metán–Alemanía Sub-basin remained mostly lacustrine. Adapted 
from Scotese (2001) after Roemers-Oliveira (2014). 

Internally, the Balbuena Supersequence is subdivided into four sequences (Balbuena I to 
IV). These were originally classified as third-order sequences (Boll, 1991; Hernández et al., 
1999, 2008). A similar third-order subdivision was later proposed by Deschamps et al. (2020), 
who recognized four medium-duration sequences within the Yacoraite Formation in the Metán–
Alemanía Sub-basin. More recently, Fragoso (2023), drawing on modern concepts and 
terminological refinements in sequence stratigraphy, reinterpreted the Balbuena Supersequence 
as a first-order cycle, with its internal subdivisions corresponding to second-order sequences. 
This reinterpretation stems from the recognition that the Balbuena records a complete basin-
filling cycle developed under a consistent tectonic regime (sag phase). 

Balbuena I Sequence, dominated by the Lecho Formation, records a transition from fluvial 
and eolian deposits to lacustrine carbonates and pelitic facies of the Yacoraite Formation. Its 
high-frequency cyclicity and correlation potential were highlighted by Boll and Hernández 
(1985). 

Balbuena II Sequence, corresponding to the Amblayo Member of the Yacoraite Formation, 
comprises shallow lacustrine carbonates, clastic deposits, and paleosols indicative of alternating 
arid and humid phases. Progradational stacking patterns and oolitic grainstones document 
episodes of high-energy deposition. Facies architecture and depositional dynamics were 
described in detail by Pedrinha et al. (2015) and later reinterpreted within a cyclostratigraphic 
framework by Fragoso (2023). 

Balbuena III Sequence, with its base associated with the Güemes Member, differs from the 
others due to the predominance of pelitic facies interbedded with fine sandstones and lacustrine 
carbonates. This interval, commonly referred to as the “Limoarcillosa,” has been extensively 
studied by Roemers-Oliveira (2014) and Roemers-Oliveira et al. (2015). These studies 
demonstrated that the upward transition from siliciclastic facies at the base to carbonate facies 
at the top reflects a shift from open- to closed-lake depositional conditions. Importantly, the 
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base of this sequence coincides with the K/Pg boundary, defined by δ¹³C and δ¹⁸O isotopic 
anomalies (Marquillas et al., 2003). 

Balbuena IV Sequence, equivalent to the Alemanía Member, is the most laterally extensive 
unit, reflecting the peak of thermal subsidence. Deposits display tabular to wedge-shaped 
geometries and encompass widespread carbonate and siliciclastic successions. Detailed facies 
descriptions and depositional interpretations have been provided by Bento Freire (2012), 
Gomes (2013), Bunevich et al. (2017), and Gomes et al. (2020). 

Santa Bárbara Supersequence (Danian to Ypresian) 
The Santa Bárbara Supersequence is composed of thick continental clastic successions 

bounded by regional unconformities (Hernández et al., 1999). Its external geometry evolves 
from wedge-shaped at the base to more tabular forms at the top. Deposits consist mainly of red 
beds, fluvial systems, and shallow lacustrine facies. The supersequence is subdivided into three 
sequences, from base to top, Santa Bárbara I to III. 

The Santa Bárbara I Sequence is regarded by some authors as evidence of a second syn-rift 
phase (Bianucci et al., 1981; Gómez Omil et al., 1989; Gómez Omil and Boll, 1999). It is 
composed predominantly of clastic facies, including braided river systems, distal alluvial fans, 
and mudflats, which grade into shallow lacustrine deposits in central sectors. This sequence is 
absent in the Sey and Tres Cruces sub-basins, but is represented by the Olmedo Formation in 
the Lomas de Olmedo Sub-basin and the Tunal Formation in the Metán–Alemanía Sub-basin. 
In Lomas de Olmedo, it includes the Salino Member, which comprises evaporitic deposits 
reaching up to 900 m in thickness (Moreno, 1970). 

The Santa Bárbara II Sequence is dominated by mudstones and marls, with a distinctive 
lacustrine interval at the top known as the "Faja Gris," which serves as an important 
stratigraphic marker across the basin. This sequence corresponds to the Mella Formation and 
marks the onset of the second post-rift phase, which continued until the deposition of the 
Lumbrera Supersequence. 

The Santa Bárbara III Sequence, equivalent to the Maíz Gordo Formation, consists of green 
and gray mudstones interbedded with sandstones and conglomerates. These deposits reflect 
humid climatic conditions and the widespread expansion of lacustrine environments. 

Lumbrera Supersequence (Ypresian to Priabonian?) 
The Lumbrera Supersequence, subdivided into Lumbrera I and Lumbrera II, corresponds to 

the Lumbrera Formation. It consists of continental deposits primarily linked to fluvial and 
lacustrine systems. Its base is marked by a regional unconformity, representing the last 
extensional response of the post-rift phase in the basin, whereas its top records the onset of 
compressional tectonics associated with foreland basin development (Hernández et al., 1999). 

The Lumbrera I Sequence is characterized by fluvial systems that evolve into ephemeral 
channels and saline mudflats, indicative of semi-arid conditions. It culminates in a lacustrine 
expansion under more humid climates, producing carbonate-rich deposits interbedded with 
paleosols. Within this sequence, the "Faja Verde I" forms a key stratigraphic marker that 
supports regional correlations. 

The Lumbrera II Sequence reflects the progressive influence of compressional tectonics, 
with deposition marked by lacustrine retraction and the development of red beds and fluvial 
systems. The "Faja Verde II," located at the base of this sequence, constitutes another important 
stratigraphic marker, allowing refined regional stratigraphic interpretations. 
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2.2. Methodological Framework: An Integrated Stratigraphic and Digital 
Approach 

This thesis adopts a multimethodological approach, combining fieldwork data acquisition, 
laboratory analyses, and digital techniques to generate qualitative, interpretative, and 
quantitative geological data from outcrop analogs. The methods employed across the different 
case studies include detailed vertical stratigraphic logging, sample collection, spectral gamma-
ray logging, RPAS-based image surveys, field and image-based hyperspectral data, 
petrographic thin sections, stable C–O isotope analysis, U/Pb dating of carbonates, scanning 
electron microscopy (SEM), X-ray fluorescence (XRF), High-Resolution Sequence 
Stratigraphy (HRSS), photogrammetry for the generation of Digital Outcrop Models (DOMs), 
Local Binary Patterns (LBP), Convolutional Neural Networks (CNN), Linear Discriminant 
Analysis (LDA), Multilayer Perceptron (MLP), k-means clustering (k-means), and statistical 
tools such as Principal Component Analysis (PCA) and Hierarchical Agglomerative Clusters  
(HAC). As this thesis follows an article-based structure, these methods are presented in detail 
within the corresponding chapters (Chapters 3–6). Among them, two stand out as the 
methodological backbone of this research and are therefore described in detail here: HRSS and 
photogrammetry-based DOMs. 

HRSS provides the stratigraphic framework necessary to anchor the data in both time and 
space, allowing the identification of key surfaces, correlation distances, and vertical and lateral 
facies variations. This stratigraphic control is essential for interpreting architectural patterns 
and supporting predictive applications in reservoir characterization. Photogrammetry, in turn, 
enables the digitization of outcrops into high-resolution, georeferenced 3D models, allowing 
the extraction of a significantly larger volume of data compared to conventional fieldwork. The 
resulting DOMs serve as a digital platform for the application of advanced techniques, such as 
LBP, CNN, and hyperspectral data analysis. Together, HRSS and DOMs form the foundation 
for integrating traditional stratigraphic concepts with emerging digital techniques, providing 
both context and structure to the analytical workflow developed in this thesis. 

2.2.1. High-Resolution Sequence Stratigraphy (HRSS) 
High-Resolution Sequence Stratigraphy (HRSS) is a methodology for stratigraphic analysis 

designed to organize and interpret sedimentary successions by identifying depositional units 
and key bounding surfaces at a meter to decimeter scale. This approach integrates 
sedimentological and stratigraphic observations within a temporal and spatial framework, 
allowing for the reconstruction of depositional dynamics and the prediction of facies 
architecture in both vertical and lateral dimensions. Its application is particularly relevant in 
carbonate and continental systems, where high-frequency variations in base level and sediment 
supply can generate well-defined stratigraphic cycles (Vail et al., 1977; Catuneanu et al., 2009). 

At its core, HRSS is based on the recognition that sedimentary deposits are structured by 
relative base-level fluctuations, which control the availability of accommodation space and, 
consequently, the patterns of sediment accumulation and preservation (Posamentier and Allen, 
1999; Catuneanu, 2006). These base-level changes can be driven by a combination of allocyclic 
controls, such as tectonics, climate, and eustasy, and autocyclic processes, including internal 
dynamics like progradation–retrogradation cycles, delta lobe switching, or carbonate 
productivity fluctuations (Galloway, 1989; Einsele, 1992; Schlager, 2005). In this sense, HRSS 
aims to differentiate these signals and provide a genetically coherent organization of the 
stratigraphic record. 
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A foundational concept in HRSS, already anticipated by Barrell (1917), is that most of 
geological time is not recorded in continuous sedimentation but rather marked by gaps due to 
non-deposition or erosion. According to this author, the recurrent pattern of stratigraphic 
organization, including both the rock record and the gaps, is a product of base-level rise and 
fall occurring in multiple amplitudes and frequencies. In this sense, the preserved sedimentary 
record corresponds to a tiny fraction of the geological time, and its completeness is a function 
of the observation scale, with higher-resolution timescales typically revealing greater 
discontinuities (Sadler, 1999). This idea is graphically represented in the harmonic view 
proposed by Fragoso et al. (2021), adapted from Barrell (1917), which depicts sedimentary 
stacking as the product of multiple-frequency base-level oscillations, with preserved strata 
occupying only a small fraction of total time (Fig. 2.10). In this model, many intervals are 
expressed solely by surfaces (disconformities), not strata. The implication is that HRSS relies 
heavily on the recognition and correlation of these surfaces to reconstruct the depositional 
history of a basin. 

 
Fig. 2.10. Conceptual model representing sedimentary stacking as a product of multi-frequency base-

level fluctuations. The preserved strata correspond to short periods of deposition, while most of the 
geological time is represented by gaps highlighted in the upper portion of the graph. These intervals 
are often materialized in the rock record as surfaces (disconformities), not strata. Source: Fragoso et 
al. (2021), modified from (Barrell, 1917). 

The term “sequence” first appeared in the literature in the work of Sloss et al. (1949), who 
characterized it as a succession of strata in a cratonic setting, bounded at the top and base by 
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unconformities that can be traced and correlated over great distances. However, it was only in 
the 1970s that Sequence Stratigraphy became consolidated as a robust method for stratigraphic 
analysis of sedimentary units, following the advent of Seismic Stratigraphy and advances in 
petroleum exploration. In this context, the works of Mitchum (1977) and Vail et al. (1977), 
published in the book Seismic Stratigraphy – Applications to Hydrocarbon Exploration 
(Payton, 1977), are of particular relevance. Mitchum (1977) laid the foundations of modern 
Sequence Stratigraphy, defining a depositional sequence as a stratigraphic unit composed of a 
relatively conformable succession of genetically related strata, bounded at the top and base by 
unconformities or their correlative conformities. Vail et al. (1977) presented the concepts of 
seismic stratigraphy and proposed a global eustatic cycle chart. Subsequently, several authors 
(e.g., Van Wagoner et al., 1988; Posamentier et al., 1988; Galloway, 1989; Embry and 
Johannessen, 1992) adopted Sequence Stratigraphy as a working method to explain their 
observations. However, at that time there was no standardization of concepts and terminology, 
which meant that each study applied it according to local observations and needs. 

To understand how sequence stratigraphy evolved as a discipline and how its definitions 
have changed over time, a conceptual synthesis diagram based on (Catuneanu, 2006) is 
presented in Fig. 2.11. This figure shows the historical progression from the initial definition 
by Sloss of large-scale sequences to more recent interpretations that incorporate seismic, 
genetic, and transgressive-regressive models (e.g., Sloss, 1963; Mitchum, 1977; Galloway, 
1989; Hunt and Tucker, 1992; Embry, 1993). The diversity of approaches illustrated 
underscores the complexity of bounding surface identification and the differing roles of base-
level changes in defining stratigraphic packages. 

According to the standardized definition proposed by Catuneanu et al. (2009, 2011), a 
sequence corresponds to “a succession of strata deposited during a full cycle of change in 
accommodation or sediment supply,” regardless of time or spatial scale, or the controlling 
mechanisms. This research adopts the concepts presented in these works, which allow: (a) 
defining a depositional sequence as being bounded by any two stratigraphic surfaces of the 
same genesis, thus enclosing a complete sedimentary cycle; and (b) applying consistent 
nomenclature across all frequencies, regardless of order. 

In practical terms, HRSS organizes the sedimentary record into sequences—genetically 
related strata bounded by key stratigraphic surfaces. These sequences are commonly structured 
into multiple hierarchical levels (Catuneanu et al., 2009). Higher-order sequences reflect long-
term tectonic or eustatic trends, while lower-order sequences, such as meter-scale sequences, 
are often the result of high-frequency climatic or orbitally forced variations (Strasser et al., 
1999). In this context, the term "sequence" refers to the mappable package observed in the 
outcrop, while "cycle" denotes the external or internal process responsible for its formation. 
This distinction is essential in studies of stratigraphic architecture and in predictive applications 
such as reservoir modeling. 

In modern Sequence Stratigraphy concepts, sequences can be generated at different 
frequencies, in line with the definition by Catuneanu and Zecchin (2013), in which they are 
described as cycles of changes in stratal stacking patterns, categorized into system tracts and 
delineated by sequence stratigraphic surfaces. In HRSS applications, medium- and high-
frequency sequences are often the most relevant. Petroleum field studies have shown that 
medium-frequency sequences commonly correlate with production data (e.g., Fragoso et al., 
2023; Pedrinha and Artagão, 2024). High-frequency sequences may become more significant 
in mature fields, where high-resolution studies can identify bypassed oil volumes and, through 
HRSS-based reinterpretation, lead to increased production, as demonstrated for the Fazenda 
Santa Luzia onshore field (Magalhães et al., 2020). 
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Fig. 2.11. Conceptual diagram illustrating the evolution of sequence stratigraphy models, from large-

scale unconformity-bounded sequences to more refined stratigraphic units controlled by base-level 
fluctuations. Source: Fragoso et al. (2021), modified from Catuneanu (2006). 

To support the consistent application of HRSS, a set of observable criteria has been 
established to guide the identification and hierarchical organization of stratigraphic sequences. 
These include: (1) the recognition of sequence anatomies as vertical stacking patterns, as 
defined by Zecchin (2007) and Catuneanu and Zecchin (2013); (2) the recurrence of stacking 
patterns in vertical successions; (3) the analysis of trends in higher-frequency sequences to 
define lower-frequency packages; and (4) the mappability of stacking patterns and their 
bounding surfaces across laterally continuous sections, whether in outcrops, seismic profiles, 
or subsurface datasets. The last three criteria follow the framework proposed by Silveira (2020), 
Magalhães et al. (2020), and Fragoso et al. (2021, 2022). 
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These criteria are not rigid rules, but context-sensitive guidelines that must be adapted based 
on the resolution of the available data, the spatial scale of observation, and the dominant control 
mechanisms of the depositional system. In general, higher-frequency sequences exhibit more 
detailed internal architecture but reduced lateral continuity, whereas lower-frequency 
sequences tend to be more mappable and regionally extensive. Fig. 2.12 summarizes these 
observable criteria and illustrates how stratigraphic organization evolves from facies trends to 
stacking patterns and bounding surfaces. 

One of the strengths of HRSS lies precisely in its predictive capability. By identifying 
vertical and lateral facies trends and understanding their cyclicity, HRSS enables the inference 
of reservoir properties in areas with limited data. For instance, a progradational stacking pattern 
may indicate coarsening-upward units with good reservoir potential, whereas retrogradational 
trends might point to finer-grained facies with sealing capacity. Additionally, the recognition 
of sequence boundaries and condensed sections supports the subdivision of the stratigraphic 
record into genetically coherent compartments, which is essential for understanding reservoir 
heterogeneity and compartmentalization (Magalhães et al., 2020). 

In the context of this thesis, HRSS is systematically applied across all case studies. It serves 
both as a structural framework for integrating digital data and as an independent analytical tool 
for interpreting facies distributions, identifying features such as sealing or high-permeability 
layers, and evaluating the correlation potential of stratigraphic surfaces across different 
hierarchical levels. The two main outcrop analogs analyzed in this work demonstrate the 
complementary roles of HRSS in different geological contexts. In both cases, the identification 
of vertical stacking pattern sequences is supported by consistent stratigraphic criteria, including 
the use of two key bounding surfaces: the Maximum Retraction Surface (MRS) and the 
Maximum Expansion Surface (MES). These surfaces correspond, respectively, to the surfaces 
of maximum regression and maximum flooding in marine settings, adapted here to lacustrine 
environments following Fragoso et al. (2023). The MRS, frequently associated with subaerial 
exposure, is adopted in this thesis as the sequence boundary, ensuring consistency in the 
hierarchical organization of the stratigraphic framework. 

In the Barre du Cengle study, HRSS is used as the primary methodological axis. The 
presence of well-exposed, palustrine-dominated carbonates allowed for its application with 
high spatial precision. Photogrammetry-derived Digital Outcrop Models (DOMs) enabled the 
detailed tracing and correlation of stratigraphic surfaces that would have been difficult to follow 
using traditional field methods alone. The ability to identify such sequences, even in complex 
lacustrine settings, was instrumental in defining depositional models and interpreting the 
temporal evolution of the system. The correlation of medium-frequency sequences, a key 
element in understanding stratigraphic architecture, would not have been feasible without the 
support of DOMs, confirming their synergistic role in enhancing HRSS applications in analog-
based studies. 

In the Salta Basin case studies, HRSS is systematically applied in combination with digital 
techniques such as LBP, CNN-based image classification, and hyperspectral analysis. It 
provides the essential stratigraphic framework within which these digital classifications are 
interpreted and integrated. By enabling the identification of key bounding surfaces, HRSS 
supports the assessment of lateral facies variability and depositional architecture. HRSS is 
particularly critical for interpreting the distribution of heterogeneities in the Balbuena III 
Sequence, supporting the identification of reservoir-prone intervals and sealing units, and 
aiding in the understanding of depositional geometries. 
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Fig. 2.12. Criteria for applying High-Resolution Sequence Stratigraphy (HRSS). Source: Fragoso et al. 

(2021), integrating stacking pattern anatomies (Zecchin, 2007; Catuneanu and Zecchin, 2013) with 
recurrence, trend, and mappability criteria used as hierarchical organization guidelines (Silveira, 
2020; Magalhães et al., 2020). 

It is worth emphasizing that HRSS is not limited to static facies interpretation but also serves 
as a crucial tool in dynamic reservoir characterization. When integrated with petrophysical and 
geochemical datasets, HRSS helps clarify the stratigraphic controls on porosity and 
permeability distribution. This is particularly relevant in carbonate systems, where diagenetic 
overprinting can obscure original depositional features (Lucia, 2007; Ahr, 2008; Kargarpour, 
2020). In such cases, the reconstruction of stacking patterns and accommodation trends is key 
to assessing whether reservoir quality is primarily controlled by primary or secondary porosity 
(Magalhães et al., 2020). 

The systematic application of HRSS throughout this thesis highlights its central role in 
bridging traditional stratigraphic analysis with advanced digital methods. By establishing a 
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stratigraphic framework that is both temporally and spatially coherent, HRSS not only 
contextualizes digital data but also enhances their geological relevance. This integrative 
approach reinforces the interpretation of heterogeneities and supplies robust input for the 
development of geologically consistent reservoir models. In this sense, HRSS stands not merely 
as a methodological foundation but as a critical interface between observation, interpretation, 
and modeling. 

2.2.2. Photogrammetry-based Digital Outcrop Models (DOMs) 
Photogrammetry is a remote sensing technique that reconstructs three-dimensional (3D) 

geometries from overlapping two-dimensional (2D) images, allowing the generation of Digital 
Outcrop Models (DOMs), also referred to as Virtual Outcrop Models (VOMs), which 
accurately represent geological surfaces (Westoby et al., 2012; Bistacchi et al., 2022; Tavani et 
al., 2024). In geosciences, photogrammetry-derived DOMs have become fundamental tools for 
outcrop-based investigations, with numerous applications in structural geology and karst 
systems (e.g., Corradetti et al., 2018; Larssen et al., 2020; Villarreal et al., 2020; Janocha et al., 
2021; Panara et al., 2023; Pereira et al., 2024), as well as in stratigraphy and sedimentary 
geology (e.g., Javernick et al., 2014; Bilmes et al., 2019; Li et al., 2019; Rohmana et al., 2019; 
Ramdani et al., 2022; Roisenberg et al., 2022), and other related applications. 

The photogrammetric workflow generally begins with image acquisition, which requires 
careful planning to ensure adequate coverage and optimal overlap (typically greater than 65%) 
from multiple perspectives. Since photogrammetry is based on the principle of parallax—the 
apparent displacement of objects at different distances when viewed from at least two different 
viewpoints—images must be captured from varied angles to enable precise 3D reconstruction 
(James and Robson, 2012; Westoby et al., 2012; Bistacchi et al., 2022; Tavani et al., 2024). 

While DOMs can be generated from terrestrial cameras, the widespread adoption of 
Remotely Piloted Aircraft System (RPAS) has significantly enhanced and popularized 
photogrammetric data acquisition in the field. Since the 2010s, drone-based photogrammetry 
has become increasingly prevalent, favored for its operational simplicity, portability, and 
relatively low cost (Bemis et al., 2014; Eltner et al., 2016; Bistacchi et al., 2022). As a result, 
this technique has gained prominence over LiDAR (Light Detection and Ranging)-based 
methods, even though the term "DOM" was originally introduced to describe LiDAR-derived 
datasets (Bellian et al., 2005). 

After image acquisition, 3D reconstruction is performed through Structure-from-Motion 
(SfM) algorithms (Lowe, 2004; Snavely et al., 2006; Westoby et al., 2012), which 
simultaneously estimate camera positions and generate sparse point clouds based on matched 
features across images. These sparse clouds are then densified using Multi-View Stereo (MVS) 
algorithms (Furukawa and Hernández, 2015). In some cases, pre-processing steps may be 
applied to correct exposure-related issues and ensure consistent lighting across the image set, 
thereby improving the quality of feature matching during reconstruction (Bistacchi et al., 2022). 
The result is a point-cloud DOM, which represents the outcrop surface as a dense set of points 
with X, Y, Z coordinates and additional attributes such as RGB values. These RGB properties 
are derived by projecting the color information from the original photographs onto the 
corresponding points in the cloud. This native colorization is inherent to photogrammetric 
workflows (Bistacchi et al., 2022). The dense point cloud can be further interpolated into a 
triangular mesh using surface reconstruction algorithms such as Poisson surface reconstruction 
(Kazhdan and Hoppe, 2013). This mesh can then be textured with the original images (Hanusch, 
2008), resulting in a textured-surface DOM that preserves the photorealistic appearance of the 
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outcrop. Fig. 2.13 summarizes the photogrammetric workflow using RPAS, from field data 
acquisition to the generation of high-resolution DOMs. 

 
Fig. 2.13. Illustrative workflow for the generation of Digital Outcrop Models (DOMs) from 

photogrammetric data acquired using Remotely Piloted Aircraft Systems (RPAS). The flowchart 
outlines the key stages, from field planning and image acquisition to point cloud densification and 
mesh generation. Adapted from Viana et al. (2018). 
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In general, point-cloud DOMs offer higher geometric accuracy and are ideal for analyzing 
discontinuities such as fractures, joints, foliations, or bedding planes. In contrast, textured mesh 
models represent smoothed versions of the original point cloud, often resulting in slightly 
blurred edges at transitions between facets. These models are preferable when visual image 
information is more critical than precise 3D geometry and are commonly used for mapping 
linear features (e.g., polylines) or areal features (e.g., polygons) (Bistacchi et al., 2022). 

The entire SfM-MVS workflow is available in various software packages, including free 
tools (e.g., Meshroom) and commercial solutions. Among the latter, Metashape is widely used 
due to its intuitive and user-friendly interface. 

Regarding model resolution, Bistacchi et al. (2022) emphasized that an appropriate ground 
resolution (e.g., pixels per meter) is essential when planning photogrammetric surveys, as it 
determines the level of detail that can be extracted from the resulting DOM. The resolution 
must be sufficient to capture the smallest features of interest, while avoiding unnecessarily long 
acquisition and processing times. 

Typically, camera parameters such as pixel size and focal length remain fixed during 
acquisition, making the camera-to-target distance the main factor controlling ground resolution. 
Assuming a simple pinhole camera model (Tsai, 1987), ground resolution (GR) can be 
calculated using the following formula: 

 𝐺𝐺𝐺𝐺 = 𝑝𝑝 𝑑𝑑−𝑓𝑓
𝑓𝑓

 

Where 𝑑𝑑 is the distance from the camera to the outcrop, 𝑓𝑓 is the focal length, 𝑝𝑝 is the sensor 
pixel size (sensor width divided by the number of pixels along the width). 

In this equation, units are considered homogeneous. Therefore, if all linear units are 
expressed in meters, GR will be expressed in meters per pixel. 

Then, knowing the image dimensions in pixels (𝑤𝑤𝑤𝑤  for width and ℎ𝑝𝑝  for height), it is 
possible to calculate the corresponding real-world dimensions (𝑊𝑊 and 𝐻𝐻) of the area covered 
by the image using the following equations: 

 𝑊𝑊 =  𝑤𝑤𝑤𝑤
𝐺𝐺𝐺𝐺

  

 𝐻𝐻 =  ℎ𝑝𝑝
𝐺𝐺𝐺𝐺

 

To improve positional accuracy, Ground Control Points (GCPs) measured via differential 
Global Navigation Satellite System (GNSS) are often integrated into the model optimization 
step (e.g., Turner et al., 2012; Duelis Viana et al., 2016; Riquelme et al., 2017). These help 
reduce geometric distortions and ensure spatial consistency across datasets (James and Robson, 
2012). However, in studies where local relative accuracy is more important than absolute 
geolocation, such as detailed facies analysis, reliable stratigraphic interpretations can still be 
achieved without GCPs, as long as acquisition geometry is robust and internal consistency is 
maintained (Eltner et al., 2016). 

Once DOMs are generated, they can be interpreted using a wide range of software solutions 
that support either dense point clouds or textured meshes. Examples include CloudCompare, 
Lime (Buckley et al., 2019), Skua/Gocad, and Move. Additionally, an increasing number of 
custom applications are being developed or enhanced in Python, enabling flexible workflows 
for data processing, feature extraction, and geological interpretation (e.g., Borghini et al., 2024; 
Namongo Soro et al., 2024; Guadagnin et al., 2025). Moreover, DOMs are increasingly being 
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adopted in virtual reality environments, further expanding their utility in geological analysis 
and education (e.g., Seers et al., 2022; Pugsley et al., 2022). 

In this thesis, photogrammetry-based Digital Outcrop Models (DOMs) were employed in 
both study areas: the Barre du Cengle in southern France and the Salta Basin in northwestern 
Argentina. In each case, the models were processed using the commercial software Metashape 
(Agisoft, 2023), which enabled efficient image alignment, 3D reconstruction, and texturing. 

At the Barre du Cengle, data acquisition was performed using a DJI Phantom 4 RTK, a 
RPAS equipped with a 20-megapixel 1-inch CMOS sensor and a mechanical shutter, allowing 
high-quality image capture during flight (Fig. 2.14). The onboard RTK module, combined with 
a GNSS receiver, provided centimeter-level positioning accuracy. Additionally, twenty GCPs 
were distributed across the site and measured using Trimble R8 RTK GNSS receivers to 
enhance model accuracy. The GCPs were marked on the outcrop surface with cross-shaped 
symbols using water-washable, environmentally friendly spray paint. All positioning was 
referenced to the French RGF93 geodetic system. The survey resulted in over 10,000 images 
captured with varied tilt angles (0°–45°) and sufficient overlap (≥80% forward, ≥65% lateral). 
Four models were generated: one lower-resolution model (2.4 cm/pixel) encompassing the 
entire cliff, and three high-resolution models (ranging from 6.1 to 7.8 mm/pixel), each focused 
on areas where detailed sedimentological logs were measured. 

 
Fig. 2.14. Photogrammetric survey at the Pas du Lièvre outcrop, La Barre du Cengle. (A) Dense point 

cloud with photograph positions and orientations (blue rectangles). (B) Triangulated mesh. (C) 
Textured DOM. (D) GCP marked on the outcrop surface. (E) GNSS RTK base station. (F) DJI 
Phantom 4 RTK RPAS. (G) Flight plan displayed on the control screen. 
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In the Salta Basin (Fig. 2.15), DOMs were produced for selected outcrops using a DJI 
Matrice 300 RTK RPAS mounted with a DJI Zenmuse P1 full-frame camera and a 35 mm lens. 
The flights were supported by a DJI D-RTK 2 base station, enabling real-time RTK correction 
with high spatial accuracy. Unlike the approach in France, no GCPs were used, as the RTK 
system alone ensured sufficient geolocation precision for the intended analyses. Thanks to 
favorable terrain conditions, the RPAS was able to operate at close range, at least 8 meters from 
the outcrop, with the camera facing the outcrop surface. Images were acquired while the RPAS 
hovered steadily, ensuring evenly spaced and sharply focused photographs. A total of 947 
images were collected across two outcrops (Assado and Vapumas), which are part of this study, 
achieving a ground resolution of approximately 2 mm per pixel. This extremely high-resolution 
dataset was essential for the detailed facies characterization and stratigraphic interpretation 
conducted in this work. All positioning was referenced to the WGS 84 geodetic system (EPSG: 
32720). 

 
Fig. 2.15. Photogrammetric survey at the Assado outcrop in the Salta Basin. (A) Dense point cloud with 

photograph positions and orientations (blue rectangles). (B) Triangulated mesh. (C) Textured DOM. 
(D) GNSS RTK base station. (E) DJI Matrice 300 RTK RPAS. (F) Field acquisition activity. 
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Mont Sainte-Victoire, Paul Cézanne, c. 1886–1887, via Wikimedia Commons. 

 

 « Pour bien peindre un paysage, je dois découvrir d’abord les assises géologiques. » 

Paul Cézanne, Conversations avec Cézanne (M. Doran, 1978) 
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Abstract 
An integrated approach combining petrography, photogrammetry, geochronology, SEM, 

and geochemical data was utilized to analyze lithofacies, stacking patterns, and lateral facies 
variations, and to interpret environmental dynamics during the deposition of carbonates from 
‘La Barre du Cengle’ in the Early Paleogene. Located in the SE of France, the elliptical Cengle 
Plateau stretches 7 km from east to west and is 2 km wide, featuring cliffs ranging in thickness 
from 20 to 35 m. These cliffs showcase grayish, beige, and pinkish limestones dominated by 
palustrine facies, forming part of the ‘Calcaire de Saint Marc’ Formation of the Arc Basin. 
Sedimentary deposits within this interval were repeatedly subjected to subaerial exposure due 
to fluctuations in lake levels driven by climate, resulting in the organization of elementary 
sequences at decimetric to metric scales, which stack up into small-scale sequences at the 
decametric order. Deposition occurred under mainly subarid climatic conditions, with 
paleogeographic variations in the basin corresponding to changes in lake base levels over time 
and space. At least four frequencies of base level variation are present: very high and seasonal 
frequency, responsible for the formation of palustrine facies; high frequency, which generates 
the elementary sequences; medium frequency, which leads to the formation of the small-scale 
sequences; and low frequency which corresponds to the deposition of the entire set of 
limestones that form the Cengle cliff. The transition between lacustrine, palustrine, and 
pedogenic environments consistently occurs from west to east over time. In the more distal 
regions, the proportion of lacustrine facies tends to increase, and the thicknesses of the 
preserved sedimentary record tend to be greater. Conversely, palustrine and pedogenic facies 
predominate in the more proximal areas, typically resulting in decreased thickness. 

Keywords: Continental carbonates; Limestones; Pedogenesis; Cyclicity; Arc Basin; Digital 
outcrop models 

3.1. Introduction 
Continental carbonate sediments encompass a wide variety of deposits, including lacustrine 

facies, which may undergo pedogenesis, giving rise to palustrine (Freytet and Verrecchia, 2002; 
Alonso-Zarza and Wright, 2010a) and pedogenic facies (if the subaerial exposure is longer –  
Alonso-Zarza and Wright, 2010a) caused by the drop in the lake's water level. This exposure 
induces varying degrees of modification in the primary sediments (Freytet and Plaziat, 1982; 
Wright and Platt, 1995; Freytet and Verrecchia, 2002; Alonso-Zarza, 2003; Alonso-Zarza and 
Wright, 2010a), thus making challenging the differentiation between palustrine and pedogenic 
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carbonates. The cyclic nature of many carbonate deposits (Wright and Platt, 1995) results in a 
polyphasic development of pedogenic figures, sometimes causing a telescoping of sedimentary 
cycles, making them difficult to individualize. Additionally, groundwater calcrete development 
during prolonged subaerial exposures complicates the interpretation of palustrine cyclothems 
(Alonso-Zarza, 2003; Wanas and Soliman, 2014). 

Numerous studies have been previously conducted regarding the cyclic stacking pattern of 
lacustrine–palustrine deposits (e.g., Platt and Wright, 1992; Wright and Platt, 1995; Armenteros 
et al., 1997; Alonso-Zarza et al., 2011; Méndez-Bedia et al., 2020). The introduction of the 
‘exposure index’ concept (Platt and Wright, 1992) gives rise to implementing a semi-
quantitative method for defining and characterizing palustrine carbonate sequences in one 
dimension. On the other hand, the published literature lacks examples of 2D or 3D 
characterization of these sequences, making it possible to highlight lateral variations in vertical 
stacking pattern and exposure index, and finally to define detailed architectures in lake margin 
and palustrine settings.  

This research focuses on conducting a detailed analysis of palustrine-dominated limestone 
sequences outcropping on the cliffs of the Cengle Plateau in southeastern France. This provides 
the unique opportunity to study the development and lateral evolution of palustrine-dominated 
sequences over a distance of up to 7 km, analyze their vertical stacking pattern in 2D, and 
highlight different orders of cyclicity. 

The Cengle Plateau cliff, locally known as ‘La Barre du Cengle’ or ‘Calcaire du Cengle’, is 
part of the ‘Calcaire de Saint-Marc’ Formation within the Arc Basin (Durand, 1984; Cojan et 
al., 2000). The age of deposition of this carbonate formation was assigned to the Thanetian–
Ypresian, including, therefore, the Paleocene–Eocene boundary (Feist-Castel, 1975; Durand, 
1984; Cojan et al., 2000; Tortosa and Leleu, 2020). Despite extensive exposure, access to the 
Cengle Plateau is limited due to geomorphological constraints, potentially contributing to the 
scarcity of complete sedimentological studies of this formation. The sole comprehensive study 
providing detailed descriptions of some stratigraphic profiles in the area dates back to the 
sixties, when Durand (1963) offered a thorough description of lithotypes and interpretations 
based on petrographic data. 

This paper not only aims to provide a detailed description of the facies found in the 
palustrine-dominated environment within a high-resolution stratigraphic framework but also: i) 
to investigate the processes responsible for their formation; ii) to develop an exposure index as 
a relative indicator of subaerial exposure time; iii) to create a predictive model for the spatial 
distributions of the facies, anatomies, and stacking patterns; and iv) to provide insights into the 
paleogeography, tectonic evolution and paleoclimate of southeastern France during the Early 
Paleogene. 

An integrated approach was employed to accomplish this study, combining traditional and 
digital geological methods. Field data collected from vertical stratigraphic profiles and results 
from petrographic, sedimentological, geochemical, geochronological, and stratigraphic 
analyses were integrated into a Digital Outcrop Model (DOM) generated through aerial 
photogrammetry acquired by a Remotely Piloted Aerial System (RPAS). 

3.2. Geological setting 
The Cengle Plateau is in the Provence region of southeastern France (Fig. 3.1), south of 

Montagne Sainte-Victoire, around 15 km east of Aix-en-Provence. The plateau has an elliptical 
shape, measuring about 7 km in length from east to west and 2 km across, with an average 
altitude of 500 m. The cliff thickness, which exposes the lacustrine–palustrine limestones of the 
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Cengle (‘Calcaire de Saint-Marc’ Formation), part of the Arc Basin, varies from 35 m in the 
West to just under 20 m in the East. Talus deposits of rock debris from the same formation are 
found at its base. 

 
Fig. 3.1. Location of the Cengle Plateau. Simplified geological map of the Arc Basin (1:250,000), 

modified from Rouire (1979) after Leleu (2005). Panoramic photograph (© Georges Flayols) of the 
Cengle plateau and Sainte-Victoire Mountain in the background. 

Covering an approximate area of 1600 km2, the Arc Basin is the largest syncline in the 
Provence region (Westphal and Durand, 1990). Its geological orientation is from east to west 
and preserves a continental sedimentary record from the Upper Cretaceous (Santonian) to the 
Middle Eocene (Lutetian) (Durand and Tempier, 1968). The deposition of the Arc Basin during 
the late Santonian marks a transition from predominantly marine sedimentation of the South-
Provence Basin (Tortosa and Leleu, 2020 and references therein), which prevailed in the 
southern region of Provence until that time, to primarily continental sedimentation. The 
progressive marine transgression that inundated the Provence region from the early to middle 
Cenomanian persisted until the late Santonian (Floquet, 2020). At this time, the subsidence rate 
of the South-Provence Basin decreased due to compressional Pyreneo-Provençal deformation, 
while subsidence in the Arc Basin intensified (Cojan and Moreau, 2006). 

From the Late Cretaceous to the Middle Eocene, continuous subsidence in the Arc Basin led 
to the gradual accumulation of thicknesses exceeding 2000 m (Cojan, 1993) of continental 
sediments, commencing in the Campanian (Durand, 1984; Leleu, 2005). During this interval, 
the basin paleogeography displayed minimal variation (Cojan and Moreau, 2006; Tortosa and 
Leleu, 2020), with intercalated sequences evolving from braided fluvial deposits across silty 
floodplains to shallow lacustrine carbonate deposits (Durand, 1984; Cojan, 1993). As discussed 
by Cojan (1993), the basin paleogeography is governed by two fault systems: one oriented E-
W, which defines the drainage pattern, and another NNE–SSW, controlling lateral facies 
variations. In this context, deposition is influenced by both tectonic and climatic factors. 

Stratigraphically, the various sequences deposited in the Arc Basin were initially designated 
by local stages (Valdonian, Fuvelian, Bégudian, Rognacian, and Vitrollian), named after type 
localities situated in the Aix-en-Provence region (Matheron, 1878; Villot, 1883). These local 
stages correspond to facies characterized by alternations of limestones, sandstones, and 
claystones, defined by their lithological nature and fossil content. These local stages formed the 
basis for the current chrono-lithostratigraphic framework of the basin. Studies (Durand, 1984; 
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Cojan et al., 2000; Cojan and Moreau, 2006) have sought to correlate the local stages with 
international marine stages, primarily relying on biostratigraphic, carbon isotopic, and 
paleomagnetic data. The current lithostratigraphic section of the Arc Basin (Fig. 3.2A), as 
outlined by Cojan et al. (2000) and Tortosa and Leleu (2020), regards the principal limestone 
intervals as the main lithostratigraphic units of the Basin. 

 
Fig. 3.2.  Stratigraphy of Arc Basin. A) Simplified stratigraphic column of the Arc Basin after Tortosa 

and Leleu (2020). B) Simplified N–S stratigraphic section of formations and facies occurring in the 
Cengle plateau region after Durand and Tempier (1968). 
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In the eastern part of the Arc Basin, a significant marker bed, known as the ‘Poudingue de 
la Galante’, occurs a few meters below the ‘Calcaire de Vitrolles’ Formation. This lithological 
unit consists of a conglomerate composed of lithic fragments of various compositions. It 
represents an upper Maastrichtian deposit, with a thickness ranging from 2 to 4 m, located in 
the Vitrolles region and at the base of Sainte-Victoire Mountain. It likely correlates with 
scattered sandstone lenses found in the same position in the Rognac area (Tortosa and Leleu, 
2020). Besides serving as an excellent correlation horizon, the K/Pg (Cretaceous/Paleogene) 
boundary is just above this stratum. This interpretation aligns with the findings by Cojan et al. 
(2000), who linked the K/Pg boundary to a pronounced negative δ13C signal. 

In this study, when referring to the ‘Calcaire du Cengle’ or Cengle limestone among other 
variations, it implies a geographical connotation. When discussing the lithostratigraphic unit to 
which the Cengle limestones belong, it will be referred to as the ‘Calcaire Saint-Marc’ 
Formation, as suggested by Corroy and Touraine (1961), Cojan et al. (2000) and Tortosa and 
Leleu (2020). In the Cengle Plateau region (Fig. 3.2B), lacustrine limestone deposits are 
interbedded with reddish marl and claystone deposits formed in river floodplain environments. 
Regarding fossils in the Cengle limestones, the literature records fragments of charophytes, 
bivalve and gastropod mollusks, ostracods, and Microcodium debris (Durand, 1963). Bivalve 
mollusks (Durand, 1963) and gastropods such as Physa prisca, Physa columnaris, Succinea 
sparnacensis, and Planorbis sparnacensis, have been identified (Feist-Castel, 1975; Durand, 
1984). The Provence region is internationally recognized for its dinosaur eggshells (Campanian 
and Maastrichtian intervals) and giant bird eggshells in the Paleocene and Eocene units, 
including the Cengle region. Below the Cengle limestones, thin eggshells of Ornitholithus biroi 
are found, while in the marly intervals at the summit of the Cengle Plateau, thick eggshells of 
Ornitholithus arcuatus occur (Durand, 1984; Angst et al., 2015). 

3.3. Database and methods 

3.3.1. Field data acquisition 
The escarpment of the Cengle Plateau is quite steep, but access via the D56C road cuts 

through the structure, and some trails that ascend the plateau are mainly used for hiking 
activities. 

Four vertical stratigraphic profiles (Pas de la Vache, Pas de Monsieur, Pas du Lièvre, and La 
Route) were surveyed at a detailed scale (1:40), following the method described in Miall (2000), 
totaling 110 m of vertical sections. In these profiles, macroscopic identification of facies, 
textures, and sedimentary structures was carried out. In the field, the lacustrine–palustrine facies 
were described following the terminology available in Alonso-Zarza and Wright (2010a) in 
conjunction with Dunham's classification for carbonates (Dunham, 1962), which is based on 
recognizable depositional textures of limestones. Photographic documentation of macrofacies 
was also conducted, and samples were collected for petrography, stable isotope analysis, and 
U–Pb dating. Throughout the vertical stratigraphic profiles, 262 samples were taken, resulting 
in 262 data points with stable carbon and oxygen isotope data, 140 petrographic thin sections, 
and 6 samples suitable for U–Pb radiometric dating of carbonates. 

In subsequent field stages, aerial photography was carried out using a RPAS, as detailed in 
the Photogrammetry section. 

3.3.2. Photogrammetry 
To generate DOMs, aerial photogrammetric surveys were conducted using a RPAS. The 

equipment employed was the DJI Phantom 4 RTK. This device is outfitted with a 20-megapixel 



75 
 

1-inch CMOS sensor camera, a Global Navigation Satellite System (GNSS), and a Real-Time 
Kinematic (RTK) module. The sensor's mechanical shutter facilitates image capture while the 
equipment is in motion, expediting the process of photographic acquisition. The RTK module 
provides positioning information with centimeter-level accuracy in real time. To mitigate 
distortions and enhance the precision and accuracy of geopositioning in the generated models, 
coordinates for twenty Ground Control Points (GCPs) were acquired during fieldwork. These 
points were marked with crosses, serving as markers for indicating the GCPs on the individual 
images. A pair of Trimble GNSS RTK R8 receivers was employed with the base receiver 
remaining stationary at a point with known coordinates. The entire acquisition process was 
georeferenced in accordance with the French geodetic network, RGF93 (EPSG: 4171). 

More than 10,000 aerial photographs were acquired with the camera tilt ranging from 0 to 
45º, utilizing semi-automatic and manual flight plans. These images were captured with a 
minimum of 80% forward and 65% side overlap. The survey resulted in four models: one 
covering the entire cliff at a lower resolution of 2.4 cm per pixel, and three higher-resolution 
models at Pas de Monsieur (7.8 mm per pixel), Pas du Lièvre (6.1 mm per pixel), and La Route 
(1.2 cm per pixel), where sedimentological logs were acquired. 

The DOMs were processed using the Agisoft® Metashape Professional Edition software 
(v.2.0.1) through the Structure from Motion and Multi-View Stereo (SfM-MVS) workflow. 
This workflow is well-established and widely employed for generating virtual models of 
outcrops (Lowe, 2004; Brunier et al., 2016; Marques et al., 2020; Bistacchi et al., 2022). As a 
result, dense point clouds were obtained, and triangulated meshes were generated by 
interpolation and textured with outcrop images to produce the photorealistic models. Afterward, 
geological interpretations of the DOMs were carried out using the Petex® Move software 
(v.2022). 

3.3.3. Petrographic characterization 
A total of 140 thin sections, prepared from field-collected samples, were analyzed using a 

petrographic transmitted polarized light microscope. Microscopic petrography was of 
paramount importance for facies characterization, as it enabled a detailed analysis of their 
constituents (grains, matrix, and cements). Furthermore, it allowed the identification of textures 
and microstructures, from which information on depositional and diagenetic contexts was 
obtained. Microscopic descriptions followed the carbonate classification by Dunham (1962), 
and the proportions of rock constituents in the thin sections were estimated visually by 
comparing them with specific tables (Baccelle and Bosellini, 1965; Matthew et al., 1991, cited 
in Flügel, 2010). 

The petrographic thin section descriptions were combined with field observations, resulting 
in the characterization of the carbonate lithofacies and the exposure index presented in this 
study. The exposure index is a semiquantitative method designed to identify features of 
subaerial exposures and assign a relative temporal evolution to the observed pedogenic 
transformations. This approach is akin to methodologies employed by other researchers 
focusing on palustrine-dominated environments (e.g., Platt and Wright, 1992; Armenteros et 
al., 1997; Alonso-Zarza and Wright, 2010a). 

3.3.4. U–Pb dating 
U–Pb analyses were carried out at CEREGE, Aix-en-Provence, France, using an ESI 193nm 

excimer laser ablation system coupled to an Element XR SF-ICP-MS (more details of the 
parameters used can be found in Table S3.1). Calcitic components such as limestone micrite, 
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early diagenetic features, and late cements identified after petrographic characterization from 
six samples of the Pas de la Vache, Pas du Lièvre, and La Route profiles were analyzed 
distinctly on 30 and 100 μm-thick thin sections using a laser ablation spot size of 150 μm in 
diameter. After data processing, ages for each selected calcitic component were derived from 
Tera–Wasserburg diagrams obtained using the IsoplotR software (Vermeesch, 2018), and 
plotted in the Tera–Wasserburg space. WC1 was used as a primary standard to correct 
238U/206Pb fractionation (Roberts et al., 2017) and AUG-B6 as a secondary standard (Pagel et 
al., 2018) to check for accuracy. Ages are quoted at a 95% confidence interval, including the 
propagation of systematic uncertainty of the standards per Horstwood et al. (2016). 

Thirteen samples were selected for radiometric U–Pb dating based on the constituents 
observed in thin sections. Among these, only six samples (V-40, L-4, L-6, R-3, R-7, and R-55) 
exhibited adequate uranium and lead proportions for dating. Initial analyses were conducted 
directly on 30 µm-thick thin sections. Following these analyses, three samples (R-3, R-7, and 
R-55) were chosen for the preparation of thicker thin sections (100 µm-thickness). The obtained 
data underwent dendrogram analysis using Hierarchical Cluster Analysis (HCA) to group them 
based on similarities, considering both the determined ages and associated errors (utilizing 
standard correction error). Subsequently, the IsoplotR software was employed to calculate the 
weighted average (Vermeesch, 2018) for the groups determined by HCA. 

3.3.5. SEM analysis 
The scanning electron microscope (SEM) was used to comprehend the results obtained from 

carbonate dating using the U–Pb method. This instrument, known for its ability to generate 
highly magnified images with a good depth of field, can be used, among other applications, to 
analyze microtextural features of the matrix and cements in sedimentary rock samples (Welton, 
1984). SEM analyses were conducted at the PRATIM Research Platform, Aix-Marseille 
University, using the Zeiss EVO 15 scanning electron microscope. The analyses were 
performed directly on the same three 100 µm-thick thin sections that were used for U–Pb dating. 
The thin sections, covered with gold, underwent analysis under high vacuum. Observations 
were conducted at an acceleration voltage of 15 kV, with a working distance of approximately 
10 mm. SEM images were captured using the Secondary Electrons (SE1) imaging mode, 
generated by electron beams emitted from a heated LAB6 filament. 

3.3.6. C and O stable isotopes 
To obtain insights into lake base level variations and its paleohydrology, 262 powdered 

samples of the Cengle limestones were collected using a Dremel micro-drill. Subsequently, 
stable isotope analyses of carbon and oxygen in bulk rock were conducted at the GeoZentrum 
Nordbayern department, Friedrich-Alexander-Universität Erlangen-Nürnberg (Germany). This 
analytical approach involved reacting the powders with 100% phosphoric acid at 70°C using a 
Gasbench II connected to a ThermoFisher DELTA V Plus mass spectrometer. All values are 
reported per mil (‰) relative to the standard sample of belemnites known as VPDB (Vienna 
Pee Dee Belemnite) (Sharp, 2017; Hoefs, 2015). To ensure reproducibility and accuracy, 
replicate analyses of laboratory standards were conducted, calibrated by assigning δ13C values 
of +1.95‰ to NBS19 and −47.3‰ to IAEA-CO9, and δ18O values of −2.20‰ to NBS19 and 
−23.2‰ to NBS18. Reproducibility for δ13C and δ18O was ±0.04 and ±0.06 (1 standard 
deviation), respectively. Standard NBS 19 was additionally analyzed as a quality control 
sample. 
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3.4. Results and interpretations 

3.4.1. Carbonate lithofacies 
Eight distinct lithofacies were identified and grouped into three facies associations: 

lacustrine (Fig. 3.3), palustrine (Fig. 3.4 and Fig. 3.6), and pedogenic (Fig. 3.7). These 
lithofacies are described below (and summarized in Table 3.1). 

3.4.1.1. Lacustrine facies association (LC) 

3.4.1.1.1. Microcodium-bioclastic wackestone and packstone 
(LC-1) 

Macroscopically, bioclastic wackestones and packstones are tight limestones exhibiting gray 
and beige hues (Fig. 3.3A). They are made of a densely packed dark micrite matrix encasing 
allochems whose proportions range from 15 to 65%. These rocks predominantly display a 
massive bedding structure, characterized by homogeneous layers (>10 cm thick) that lack 
internal sedimentary structures. In the thin section, the micrite presents a clotted appearance. 
Key allochems consist of Microcodium crystal fragments, with their proportion defining the 
microfacies as either wackestone or packstone. These fragments appear as disaggregated and 
reworked prismatic crystals, occasionally showing internal dissolution, measuring 45 to 100 
µm in length, with a modal concentration between 60 and 70 µm. Up to 20% of additional 
grains comprise ostracod shells, both articulated and disarticulated, fragmented or intact; 
gastropod (Fig. 3.3B) and bivalve shell fragments; occasional clasts from longitudinal and cross 
sections of charophyte thalli (Fig. 3.3B) and gyrogonites (Fig. 3.3C). Scarce submillimeter-
thick rootlet marks (Fig. 3.3D), filled with mosaic calcite cement occur.  

Interpretation: The substantial micrite content suggests the formation of lithofacies LC-1 in a 
low-energy setting (Flügel, 2010). The fossil assemblage indicates typical lacustrine 
sedimentation (Gierlowski-Kordesch, 2010). Microcodium crystals originate within a 
pedogenic setting (Alonso-Zarza, 2003; Alonso-Zarza and Wright, 2010b; Flügel, 2010) and 
are transported to the lake as debris. Microcodium fragments originating from the coastal area 
exhibit abundance variations, reflecting various positions relative to the lake's shoreline. A 
higher content in Microcodium suggests deposition closer to the lake margins, while a lower 
proportion indicates sedimentation in a more distal area. The presence of charophytes points to 
deposition in an oligotrophic lacustrine environment with shallow, fresh to brackish waters 
(Flügel, 2010), especially in alkaline/calcium-rich lakes with clear waters (Scholle and Ulmer-
Scholle, 2003). Subaquatic plants could be responsible for the observed rootlet marks. 

3.4.1.1.2. Intraclastic wackestone–packstone (LC-2) 
The LC-2 facies corresponds to gray and beige intraclastic bioclastic wackestones and 

packstones. Descriptively, it closely resembles the LC-1 lithofacies, primarily differing in the 
presence of mud intraclasts. The mud intraclasts range from 10 to 60%, with sizes spanning 
from 100 µm to 2 mm. They display morphologies ranging from spherical to elongated, with 
angular to rounded contours. These intraclasts possess a clotted internal structure and, in some 
instances, exhibit irregular microbial coatings (Fig. 3.3E) resembling oncoids. Rare tubes of 
calcimicrobial filaments (measuring up to 100 µm in length and possessing submicrometric 
thickness, with dense micritic carbonate precipitation around their sheaths) were also observed. 
The most prevalent grains consist of fragmented and reworked prismatic crystals of 
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Microcodium, ranging from 10 to 45%. Fragments of charophyte stems, gyrogonites, ostracods, 
gastropods, and bivalves complete the fossil assemblage. 

Interpretation: The lithofacies LC-2 signifies deposition in coastal lacustrine regions. 
Intraclasts are weakly consolidated fragments of penecontemporaneous carbonate sediments 
eroded by action of waves or currents in the coastal regions of the lake, often redeposited  within 
the same depositional sequence (Scholle and Ulmer-Scholle, 2003). The presence of micrite, 
along with heterogeneity in intraclast sizes, and the occurrence of microbial coatings on some 
of them, suggests deposition in a low to moderate energy environment. The presence of coated 
grains and calcimicrobial filaments suggests microbial influence, likely originating from 
cyanobacteria (Scholle and Ulmer-Scholle, 2003; Flügel, 2010). 

 
Fig. 3.3. Lacustrine facies association. A) Field view of facies LC-1 at Pas de la Vache outcrop. Hammer 

length measures 28 cm. B) Fossil assemblage commonly found in the lacustrine facies: Cross-section 
of an internode (in) of charophyte thallus revealing central and cortical cell cavities, along with a 
gastropod shell (g). C) Charophyte gyrogonite (gyr) embedded in bioclastic wackestone with 
Microcodium debris. D) Rootlet traces (rts) filled with calcite cement within facies LC-1. The yellow 
arrow indicates an ostracod carapace fragment. E) Intraclastic limestone (lithofacies LC-2) 
showcasing a wide range of intraclast sizes, including those with microbial coatings (white arrow). 
All photomicrographs were captured using parallel polarizers. 
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3.4.1.2. Palustrine facies association (PL) 

3.4.1.2.1. Cracked mottled limestones (PL-1) 
The cracked mottled limestones (Fig. 3.4A) correspond to a palustrine lithofacies, exhibiting 

constant interfingering with lacustrine lithofacies. In the field, PL-1 is characterized by gray–
beige–pink mottling, displaying indications of incipient subaerial exposure. In thin sections, 
this lithofacies appears as a bioclastic wackestone (occasionally packstone) with a densely 
compacted dark micritic matrix. Within this lithofacies, the same set of allochems observed in 
lacustrine lithofacies is identified. However, there is a noticeable reduction in Microcodium 
debris, rarely exceeding 40%, and an increase in the presence of charophyte fragments. In 
certain instances, these fragments can become the dominant bioclasts, reaching percentages of 
up to 20%. Better-preserved rosettes of Microcodium aggregates can be observed. The 
distinctive feature of this lithofacies is the presence of planar to irregular desiccation cracks 
(Fig. 3.4B), occasionally circumgranular, with submicrometric-thick filled by both mosaic 
calcite cement and microsparitic silt. Geopetal structures, such as cavities filled with vadose silt 
and sealed by blocky sparry calcite, are common, as well irregular cavities (dissolution vugs) 
of various sizes infilled with mosaic calcite spar. At the top of the section exposed in the Pas 
du Lièvre outcrop, benthic foraminifers of the genus Rosalina (Fig. 3.5) associated with these 
facies were identified in three samples. The foraminifers measure between 100 and 400 µm in 
length, featuring a hyaline test with a micritic coating. 

Interpretation: Lithofacies PL-1 marks transitioning from a lacustrine to a palustrine 
environment. Alternating exposure and submergence give rise to features mirroring lake-level 
fluctuations and water table changes. Cracks result from desiccation processes caused by 
intermittent subaerial exposures (Armenteros et al., 1997; Alonso-Zarza and Wright, 2010a; 
Flügel, 2010). The mottled pattern indicates iron remobilization owing to changes in 
groundwater redox potential during water table oscillations (Freytet, 1973; Freytet and Plaziat, 
1982), evident through globular halos in thin sections (Alonso-Zarza, 2003; Alonso-Zarza and 
Wright, 2010a). The presence of cavities with vadose silt characterizes the vadose diagenetic 
environment. Situated above the water table, between the land surface and the meteoric phreatic 
zone, this setting results in pores filled with fresh water and/or air (Flügel, 2010). In general, 
all diagenetic features are early and typical of the vadose environment, practically 
penecontemporaneous to deposition. Only calcite blocky cement might postdate slightly, 
forming in vadose or phreatic conditions (Flügel, 2010). Root and rootlet marks, highlight the 
impact of vegetation cover (Platt and Wright, 1992; Armenteros et al., 1997; Alonso-Zarza, 
2003). The occurrence of benthic foraminifera likely indicates an increase in lake salinity during 
the late phase of Cengle limestone deposition. The genus Rosalina is a shallow-water benthic 
foraminifer, which is typically found in brackish water deposits (e.g., Le Calvez, 1970), either 
in marginal areas or in saline lakes. 

3.4.1.2.2. Nodular-brecciated limestones (PL-2) 
The limestones of lithofacies PL-2 exhibit a macroscopic color range from beige to pink, 

occasionally displaying mottled patterns. These limestones are characterized by brecciated and 
nodular textures (Fig. 3.4C, E). The presence of centimetric angular fragments of the host rock 
identifies the brecciated texture. Conversely, in the nodular texture, the centimetric fragments 
assume rounded shapes. This lithofacies is commonly crosscut by columnar structures, which 
consist in vertical, massive, elongated and irregularly shaped carbonate tubes, that reach ≥50 
cm in length. Under microscopic analysis, bioclastic wackestones with brecciated and nodular 
features can be identified. Submicrometric cracks filled with mosaic calcite cement and/or 
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microsparitic silt enclose millimeter to centimeter-sized clasts. Cracks in brecciated areas are 
irregular (Fig. 3.4D), while in nodular areas, they tend to be predominantly circumgranular (Fig. 
3.4F). Importantly, no indications of clast displacement or rotation are observed. A transition 
from brecciated microfacies to nodular microfacies (often multiphasic – Fig. 3.4G) is evident. 
Globular halos (Fig. 3.4H) can also be seen in some thin sections. Despite a general trend 
toward a reduced proportion of bioclasts (<40%, commonly below 20%), it is still possible to 
identify the same fossils found within lacustrine facies, with Microcodium fragments being the 
most abundant. Additionally, lithofacies PL-2 exhibits irregular cavities of varying sizes, filled 
with mosaic sparry calcite, sometimes with silt at the bottom.  

Interpretation: Nodulation initiates as a brecciated texture and evolves into a nodular texture, 
and results from repeated exposures induced by episodic fluctuations in the water levels of lakes 
undergoing intermittent desiccation (Armenteros et al., 1997; Flügel, 2010). The processes of 
shrinkage and expansion, driven by sediment desiccation and rewetting, typical of palustrine 
environments, generate cracks subsequently infilled under vadose and phreatic oxidizing 
conditions (Freytet, 1973; Armenteros et al., 1997; Alonso-Zarza and Wright, 2010a). 
According to Alonso-Zarza and Wright (2010a), these limestones may develop distinctive beds 
of metric thickness, indicating that the entire lacustrine succession experienced subaerial 
exposure during a single or multiple events. In other scenarios, only the upper or lower portion 
of the lacustrine deposit displays nodulation or brecciation, suggesting a shorter duration of 
subaerial exposure. 

3.4.1.2.3. Intraclastic packstone-grainstone (PL-3) 
Lithofacies PL-3 comprises grainy limestones. This facies has been identified in only four 

samples. Macroscopically, it exhibits a color range from gray to beige, displaying a pseudo-
oolitic texture (Fig. 3.6A). Microscopically, it is classified as intraclastic packstone and 
grainstone. Clasts are predominantly rounded (rarely elongated), resulting in a grainy texture 
to the facies, with sizes varying from very fine sand to very coarse sand, indicating poor sorting. 
The ‘grains’ possess well-defined micritized edges, and infrequently display microbial 
coatings. In certain situations, intraclasts are exclusively represented by a Microcodium crystal 
surrounded by a micritic coating (Fig. 3.6B). This characteristic highlights that this component 
has persisted as a resistant entity during the process of grainification. While most grains exhibit 
a clotted internal structure (descriptively considered as peloids), in larger grains, it becomes 
possible to discern that they originate from bioclastic wackestone, with discernible fragments 
of Microcodium crystals and charophytes. No other fossils were observed. Mosaic calcite 
cement occurs between the grains (Fig. 3.6B, C). Additionally, irregular cavities resembling 
fenestral pores are observed and filled with mosaic sparry calcite.  

Interpretation: The presence of rounded intraclasts, micritized edges, grains with microbial 
coatings, poor sorting, fenestral structures, and desiccation cracks suggests the ‘grainification’ 
process as the origin of lithofacies PL-3. The term ‘grainification’ refers to the in situ formation 
of grainstones (Freytet and Plaziat, 1982; Mazzullo and Birdwell, 1989; Wright, 1990). This 
process resembles the one responsible for forming lithofacies PL-1 and PL-2, but is more 
advanced, transforming the entire lacustrine mud into ‘grains’. As discussed by Wright (1990) 
and illustrated by Freytet and Plaziat (1982), this process is characteristic of palustrine 
limestones, where cycles of wetting and drying, expansion and contraction, as well as 
bioturbation, generate clasts from lacustrine mud that gradually detach as they undergo rotation. 
Additionally, Mazzullo and Birdwell (1989) demonstrated that the development of fenestral 
fabric in micritic sediments, coupled with root and fungal activity, plays a significant role in 
‘grainification’, with the resulting product being termed ‘diagenetic grainstones’ by them. 
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Fig. 3.4. Photographs illustrating palustrine facies PL-1 and PL-2. A) Lithofacies PL-1 at the Pas du 

Lièvre outcrop. B) Planar cracks within bioclastic wackestone, Facies PL-1. C) Brecciated PL-2 
facies at the Pas de la Vache outcrop. D) Detailed view of the brecciated PL-2 facies, highlighting 
the contrast in angular clast size and silty material filling cracks. E) Nodular PL-2 facies observed at 
the Pas du Lièvre outcrop. Hammer length measures 28 cm. F) Circumgranular cracks within the 
nodular PL-2 facies. G) Multiphase nature of nodulation in lithofacies PL-2. H) Circumgranular 
cracks within lithofacies PL-2 showing globular halos and the presence of silty material in addition 
to cement filling the cracks. All photomicrographs were taken using parallel polarizers. 
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Fig. 3.5. Photomicrograph of benthic foraminifera (cf. Rosalina) (yellow arrow) in PL-1 lithofacies 

under parallel polarizers. This figure was originally published as supplementary material. 

3.4.1.2.4. Pseudomicrokarstic limestones (PL-4) 
Pseudomicrokarstic limestones correspond to lithofacies PL-4. Macroscopically, these 

limestones exhibit a mottled gray-reddish tonality, reminiscent of breccias (Fig. 3.6D), albeit 
with restricted spatial distribution. This lithofacies is commonly associated with surfaces with 
more prominent subaerial exposure. When observed in thin sections, such materials reveal 
themselves as brecciated intraclastic bioclastic wackestones, featuring cavities visible to the 
naked eye (with dimensions of up to 10 mm in width), which are filled with diverse materials 
(Fig. 3.6D, E). Aside from micrite, the predominant constituent within the host rock comprises 
disintegrated prism-shaped crystals of Microcodium, the proportion of which may vary between 
5% and 50%. Some better-preserved Microcodium rosettes are present. In certain thin sections, 
fragments of charophytes, ostracods, and mollusks (both bivalves and gastropods) have also 
been identified. The intraclasts, composed of mudstone fragments and bioclastic wackestone, 
can constitute up to 20% of the thin sections. They possess subangular to subrounded contours, 
with lengths of up to 3 mm, with some displaying microbial or micritic coating. This 
phenomenon imparts a granular aspect to the rock in specific regions. Concerning the cavities, 
these are distributed throughout the matrix and may contain rounded intraclasts and silty 
material (Fig. 3.6F) and are also cemented by coarse mosaic calcite crystals, reaching lengths 
of up to 500 µm. 

Interpretation: The origin of pseudomicrokarst is related to the colonization of mud by long-
rooted grass, which was recently exposed, and its subsequent evolution into a complex facies 
resulting from various stages of dissolution and void infillings (Freytet and Verrecchia, 2002). 
This facies has been recognized in palustrine and pedogenic profiles since the work of Plaziat 
and Freytet (1978), who employed this term to describe limestones with irregular and complex 
cavities resembling a karstic system, in which the cavities are predominantly small, mostly 
cylindrical, and vertically elongated. As Alonso-Zarza and Wright (2010a) discussed, the prefix 
‘pseudo’ is used because cavity enlargement primarily occurs through mechanical processes 
resulting from root action and desiccation; dissolution is a secondary factor. The cavities exhibit 
sharp boundaries and generally display highly irregular forms, although rounded edges 
indicating some dissolution contribution may also be observed. According to the observations 
of Freytet and Plaziat (1982), cavity infillings are complex and include peloids, coated grains, 
and intraclasts, as well as various types of cement, ranging from vadose to coarser blocky forms. 
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Fig. 3.6. Palustrine facies PL-3 and PL-4. A) Lithofacies PL-3 at the Pas de Monsieur outcrop. The 

pencil tip is 5 mm for scale. B) Thin section of intraclastic packstone-grainstone (PL-3). Note the 
wide range of grain sizes and the calcite cement filling all interparticle spaces. Yellow arrows indicate 
intraclasts composed of isolated single-crystal of Microcodium with micritic coating. C) Detail of 
lithofacies PL-3, intraclastic packstone–grainstone. D) Lithofacies PL-4 at the Pas du Lièvre outcrop, 
showing the contact between carbonate and a thin soil cover. The irregular contact is due to 
pseudomicrokarst features. E) Facies PL-4. Diverse components, including cements, peloids, 
intraclasts, and enveloped grains, with cavity-filling. F) Pseudomicrokarst filled with mud intraclasts, 
silty material, and coarse mosaic calcite cement. All photomicrographs were captured using parallel 
polarizers. 
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3.4.1.3. Pedogenic facies association (PD) 

3.4.1.3.1. Pisolithic mottled intraclastic limestones (PD-1) 
Lithofacies PD-1 (Fig. 3.7A-C) is characterized by pisoliths within gray–red–pink mottled 

intraclastic limestones. The rock displays an overall nodular texture, with occurrences of 
intraclasts of varying sizes embedded in a matrix ranging from bioclastic wackestone to 
packstone, occasionally brecciated. The intraclasts display sizes that range from very fine sand 
to very coarse sand, with a preference for a spherical shape (sometimes elongated) and feature 
a clotted internal structure. A significant aspect of this facies is the individualization and 
rotation of specific intraclasts, irregularly coated with microbial material, larger than 1 mm, 
resulting in the formation of pisoids. In portions dominated by pisoids, mosaic calcite cement 
filling interparticle spaces is conceivable. Alongside circumgranular cracks, irregular cavities 
are frequently encountered and filled with vadose silt, and the prevalence of sparry calcite in 
mosaic patterns and pseudomicrokarst is notable. Within the host rock matrix, disintegrated 
prismatic Microcodium crystals are identified, varying in abundance from 15% to 40%, along 
with fragments of charophytes that can constitute up to 10%, and traces (<1%) of gyrogonites, 
ostracods (including intact specimens), gastropods, and bivalves.  

Interpretation: The mottled appearance, combined with a matrix containing materials of 
varying dimensions and compositions, along with the presence of pisoids, indicates that facies 
PD-1 typically results from pedogenic processes, displaying inherent similarities with the alpha 
(non-biogenic influence) and beta (biogenic influence) caliche fabrics, as documented by 
Alonso-Zarza and Wright (2010b). The pisoids identified within lithofacies PD-1 align with the 
description of ‘caliche pisoids’ presented by Flügel (2010). According to Flügel (2010), 
‘caliche pisoids’ originate in situ, exhibiting dimensions ranging from approximately 2 mm to 
several centimeters. They often exhibit weak or faint laminae with varying thickness and 
alternating light and dark layers. These pisoids are frequently observed to possess a clotted 
peloidal texture and a mud-supported fabric. 

3.4.1.3.2. Microcodium mottled limestones (PD-2) 
The PD-2 facies (Fig. 3.7D, E) is characterized by a bioclastic wackestone, notably featuring 

well-preserved Microcodium aggregates. In the field, they are represented by their mottled 
gray–red–pink appearance. The distinctive hallmark of this facies is the presence of these 
Microcodium aggregates, which appear to be either in situ or in immediate proximity to their 
site of formation. The host rock is identified as a bioclastic Microcodium wackestone or 
packstone, exhibiting a clotted matrix appearance. Within this matrix, disintegrated prismatic 
Microcodium crystals constitute 15% to 40% of its composition, as in other lacustrine and 
palustrine facies associations. Some samples display fragments of charophytes, ostracods, 
gastropods, and bivalves. Irregular cavities filled with vadose silt and mosaic calcite cement are 
present. The well-preserved Microcodium aggregates exhibit lamellar or rosette forms, 
resembling types I (‘corn-cob’) and II (‘lamellar’) as defined by Bodergat (1974). The prismatic 
calcite crystals are elongated in these cases, with dimensions ranging from 0.2 to 1 mm in length 
and 0.03 to 0.1 mm in width. The cutting orientation influences the morphology of the 
aggregates. Type I aggregates, known as ‘corn-cob’, can adopt a rosette configuration when 
cross-sectioned or a lamellar form when longitudinally sectioned. Well-preserved aggregates 
may occupy fractures or cavities (in these instances, the host rock generally exhibits breccias, 
pseudokarsts and occasionally a granular texture due to ‘grainification’) associated with 
exposure surfaces or embedded within the host rock matrix (see Fig. 3.8 for a comparative 
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analysis of the various Microcodium morphologies identified in the carbonates of the study 
area). 

At the La Route outcrop associated with this facies, a discontinuous layer (Fig. 3.7F) 
approximately 30 cm thick is present, showcasing two distinct features. The first corresponds 
to a crust (Fig. 3.7G) of crystalline limestone. Petrographic analysis reveals the presence of 
rhombic (which predominate) and lamellar crystals, exhibiting diverse granulation patterns of 
calcite. The rhombic crystals range in size from 0.2 to 1.3 mm in length and 0.2 to 0.4 mm in 
width. The lamellar crystals have dimensions ranging from 0.7 to 2 mm in length and 0.05 to 
0.15 mm in width. The porosity within this lithology is notably high, of the intercrystalline type, 
at approximately 30%. The second feature also pertains to a crystalline limestone; however, 
this one is a product of intense substitution by granular calcite crystals, measuring around 0.05 
mm in diameter. Small areas with preserved original protolith display a mudstone containing 
calcitic pseudomorphs after gypsum (Fig. 3.7H). These pseudomorphs adopt diamond-shaped 
forms and have a length of approximately 0.2 mm. 

Interpretation: In lithofacies PD-2, the well-preserved Microcodium crystals predominate. 
According to Flügel (2010), the morphology of calcite crystals within the Microcodium, 
characterized by elongated, radiating, petal-like elements clustered in ring-like structures, 
suggests the influence of a meteorically influenced environment, such as that found in 
paleosols. This feature serves as an indicator for identifying continental conditions and 
subaerial exposure. Despite being a common element in caliches and having been studied since 
the early 20th century, the origin of Microcodium remains controversial. Its origin has been 
correlated with algae, roots, fungi, microbes, and even diagenesis (inorganic origin), as 
presented by Esteban (1974). Flügel (2010) presents a comprehensive interpretation of 
Microcodium, considering it as ‘calcified mycorrhizae, a symbiotic association between soil 
fungi and cortical cells of plant roots, or as bacteria or algae’. 

Regarding the crystalline limestone crust, due to its association with a subaerial exposure 
surface and pedogenic processes, it is plausible that it represents crusts that were originally 
composed of Microcodium crystals (Type II, according to Bodergat, 1974), which were 
subsequently dissolved and replaced by rhombohedral and lamellar calcite crystals. This 
mineralogical substitution may be a contributing factor to the observed high porosity. 
Furthermore, calcitic pseudomorphs after gypsum indicate that pedogenesis occurred in an arid 
to semi-arid, evaporitic setting. 
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Fig. 3.7. Pedogenic facies association. A) Macroscopic photograph of lithofacies PD-1 at La Route 

outcrop. B–C) Photomicrographs of facies PD-1. Note the presence of materials of various sizes and 
pisoids with microbial coatings. D) Macroscopic sample of facies PD-2. The darker material 
indicated by the pencil corresponds to Microcodium aggregates. The pencil tip provides a scale 
reference of 0.5 mm. E) Detail of a Microcodium aggregate from facies PD-2. Observe how crystals 
develop within the mud matrix. F) Crystalline limestone crust containing rhombohedral and lamellar 
calcite crystals (G), as well as calcite pseudomorphs after gypsum (H). All thin-section photographs 
were captured using parallel polarizers. 
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Fig. 3.8. Microcodium morphologies found in Cengle limestones. Sketch after Plaziat (1984) with examples from the study area. The photomicrographs depict the 

prevalence of rosette-like aggregates (A); transverse and longitudinal sections (B) showcasing type I, commonly referred to as “corn-cob” morphology; an intermediate 
morphology bridging between types I and II (C); and type II morphology, often described as “lamellar” (D). E) Remnants of Microcodium crystals displaying 
fragmentation and partial dissolution within calcite prisms in mud-supported facies. Photomicrographs in A, B, and E were captured using parallel polarizers, while 
those in C and D were taken using crossed polarizers. This figure was originally published as supplementary material. 
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Table 3.1. Lithofacies summary for Cengle Plateau cliff limestones. This table was originally published as supplementary material. 

LC-1: Microcodium-
bioclastic wackestone 

and packstone

Density packed dark micrite 
matrix;  Microcodium  crystal 
debris; ostracod, gastropod, 

bivalve and charophyte 
fragments 

Massive bedding structure

Rootlets marks; stylolites;  
submillimeter fractures 

enveloped by brown material 
(iron oxides)

Shallow low-energy lake 
deposition; abundance of 
microcodium  fragments 
reflects distance from the 

lake's shoreline

LC-2: Intraclastic 
wackestone–packstone

Density packed dark micrite 
matrix; Mud intraclasts; 

Microcodium  crystal debris; 
charophyte, ostracod, 
gastropod and bivalve 

fragments; calcimicrobial 
filaments

Massive bedding structure Partially recrystallized matrix
Low to moderate-energy lake 

shore deposition with 
microbial influence

PL-1: Cracked mottled 
limestones

Density packed dark micrite 
matrix; Microcodium  crystal 

and charophyte debris; 
ostracod, gastropod and 

bivalve fragments; benthic 
foraminifers

Mottling; planar to irregular 
desiccation cracks; vadose silt; 
fenestral/vugular porosity filled 

with mosaic sparry calcite; 
rootlets and root marks

Globular halos; rootlets and 
root marks

Alternating conditions of 
exposure and lacustrine 
submersion in a vadose 
diagenetic environment

PL-2: Nodular-
brecciated limestones

Angular to rounded fragments 
of the host rock; Microcodium 
crystal, charophyte, ostracod, 

gastropod and bivalve 
fragments

Brecciated and nodular 
textures; circumgranular 

cracks, globular halos; irregular 
cavities filled with mosaic 

sparry calcite

Small brown/red amorphous 
spots (iron oxide); traces 

(<1%) of very fine sand-sized 
angular quartz grains

Sediment shrinkage and 
expansion processes induced 
by episodic fluctuations in the 

water levels of lakes in a 
palustrine environment

Palustrine        
(PL)

Lacustrine       
(LC)

Process and 
paleoenviromental 

interpretation

Facies 
Association Lithofacies Fossils and dominant 

components Dominant features Subordinate features
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Table 3.1. Lithofacies summary for Cengle Plateau cliff limestones (continuation). This table was originally published as supplementary material. 

PL-3: Intraclastic 
packstone–grainstone

Rounded mud clasts, 
sometimes with micritized 

edges and microbial coatings; 
rare fragments of 
Microcodium  and 

charophytes 

Granular texture; irregular 
cavities filled with mosaic 

sparry calcite; planar, irregular 
and circumgranular cracks

Brown/red material (small 
spots and around the grains); 

planar, irregular, and 
circumgranular cracks filled 
with mosaic calcite cement

Grainification process (in situ 
formation of grainstones by 

cycles of wetting and drying) 
in a palustrine environment

PL-4: 
Pseudomicrokarstic 

limestones

Subangular to subrounded 
intraclasts; Microcodium 

fragments; well-preserved 
Microcodium  rosettes; rare 
fragments of charophytes, 

ostracods, bilvalves and 
gastropods 

Abundant  cavities filled with 
different materials (mud 

intraclasts, silt and coarse 
cements)

Irregular to circumgranular 
submicrometric fractures; root 
marks filled with fine-grained 

mosaic calcite cement; 
partially 

recrystallized/neomorphized 
matrix

Cavity enlargement due to 
mechanical processes 

resulting from root action and 
desiccation in a palustrine 

environment

PD-1: Pisolithic mottled 
intraclastic limestones

Pisoliths with microbial 
coating; intraclasts; rare 

fragments of Microcodium 
crystals,  charophytes, 

ostracods, gastropods and 
bilvalves 

Mottling; nodular texture; 
interparticle porosity filled by 

mosaic calcite cement; 
circumgranular cracks; 

irregular cavities filled with 
vadose silt and mosaic sparry 

calcite; pseudomicrokarst

Root marks  filled with fine-
grained mosaic calcite 

cement; 
recrystallized/neomorphized 

matrix

In situ origin ‘caliche pisoids’ 
with microbial influence. 

Advanced stage of 
pedogenesis in a pedogenic 

environment (paleosol)

PD-2: Microcodium 
mottled limestones

Well-preserved Microcodium 
aggregates (rosette, 'corn-cob' 
and lammelar configurations); 
microcodium crystal debris, 

rare fragments of 
charophytes, ostracods, 
gastropods, and bivalves

Mottling; irregular cavities filled 
with vadose silt and mosaic 
sparry calcite; pseudokarst 

irregular to circumgranular 
cracks; clotted, brecciated 

and granular textures

In situ origin of Microcodium 
by symbiotic association 

between soil fungi and cortical 
cells of plant roots, or as 

bacteria or algae. Advanced 
stage of pedogenesis in a 
pedogenic environment 

(paleosol)

Dominant features Subordinate features
Process and 

paleoenviromental 
interpretation

Palustrine        
(PL)

Pedogenic       
(PD)

Facies 
Association Lithofacies Fossils and dominant 

components
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3.4.2. Exposure index and vertical stacking pattern of sequences 

3.4.2.1. Exposure index 
Based on a thorough analysis of facies, an Exposure Index (EI) for the carbonates found 

within the Cengle Plateau cliff was introduced in order to identify and characterize various 
types and orders of vertical stacking patterns. Fig. 3.9 presents a schematic and idealized 
vertical facies profile, highlighting the facies and microstructures representative of the 
developed Exposure Index. This index ranges from zero to five, with higher values signifying 
a more pronounced intensity of pedogenesis. The profile is schematic in nature, representing a 
trend in pedogenesis evolution. 

 
Fig. 3.9. Schematic vertical facies profile with Exposure Index (EI) for pedogenesis in the study area. 

EI-0: no exposure, lacustrine facies (LC-1 and LC-2). EI-1: Initial exposure, PL-1 facies. EI-2: 
Brecciated PL-2 facies. EI-3: Nodular PL-2 facies. EI-4: Further evolved palustrine facies, PL-3 and 
PL-4. EI-5: Pedogenic facies (PD-1 and PD-2). 
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The Exposure Index values are associated with the following meaning: 

EI-0: The zero index indicates the absence of exposure features and is typified by facies LC-1 
and LC-2, characteristic of the lacustrine environment. The more distal lacustrine facies are 
encountered at the base of the profile, represented by bioclastic wackstones with a lower 
proportion of bioclasts from the lake's border. Progressing upward, the more proximal 
lacustrine facies are primarily denoted by bioclastic packstones, featuring a considerably higher 
percentage of Microcodium crystal debris. 

EI-1: Index one is distinguished by incipient exposure features and is embodied by the PL-1 
facies, marked by horizontal cracks, often exhibiting a mottled pattern. 

EI-2 and EI-3: Indices two and three are characterized by palustrine facies PL-2. Brecciated 
textures denote index two, while the nodular texture hallmarks index three. Both features are 
generated by the drying and wetting process experienced by sediments under subaerial 
exposure. 

EI-4: Index four is typified by facies PL-3 and PL-4. Within palustrine facies, these indices 
encompass the more advanced facies transitioning into the pedogenic domain. 

EI-5: Finally, exposure index five includes pedogenic facies, either PD-1 or PD-2. These facies 
exhibit characteristics akin to those observed in paleosols and signify the most advanced stages 
of pedogenesis in the study area. 

3.4.2.2. Vertical stacking pattern of sequences 
Vertical stacking patterns ultimately result from repetitive base level changes operating on 

different frequencies (Barrell, 1917; Magalhães et al., 2020; Fragoso et al., 2021), with lower 
hierarchies imposing constraints on the higher ones. At least four frequencies of cyclicity that 
leave distinct marks on the rocks of the study area were identified: 

i) Very high-frequency cyclicity: refers to seasonal cyclicity, responsible for the transition from 
lacustrine to palustrine facies on the lake margins due to very short-term subaerial exposures. 
As this is a continuous process, it does not result in easily discernible surfaces; 

ii) High-frequency cyclicity: corresponds to cyclicity responsible for the vertical organization 
into sequences on a decimeter-to-meter scale (see Fig. 3.10). These sequences are marked by 
horizontal discontinuities representing stratigraphic surfaces formed during short-term 
subaerial exposures; 

iii) Medium-frequency cyclicity: this cyclicity is responsible for the formation of sequences 
that are correlatable over the entire extent of the studied cliff (numbers 1, 2, and 3 in Fig. 3.10). 
These sequences have an average thickness of 10 m and are bounded by exposure surfaces 
generated due to long-term subaerial exposures; and 

iv) Low-frequency cyclicity: corresponds to the deposition of the entire set of palustrine-
dominated carbonates composing the cliff of the Cengle Plateau. This cyclicity is responsible 
for maintaining favorable environmental conditions for carbonate deposition. 

In the context of Sequence Stratigraphy, high- and medium-frequency cyclicities are 
responsible for generating sequences, in line with the Catuneanu and Zecchin (2013) concept, 
in which sequences are defined as cycles of changes in stratal stacking patterns, categorized 
into system tracts and delineated by sequence stratigraphic surfaces. Therefore, the following 
sections will detail the different vertical stacking pattern sequences associated with these two 
frequencies. 
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Within these vertical stacking pattern sequences, two critical surfaces, namely, the 
Maximum Retraction Surface (MRS) and the Maximum Expansion Surface (MES), as used by 
Fragoso et al. (2023), have been observed. These surfaces correspond to surfaces of maximum 
regression and maximum flooding in the marine realm, adapted to the lacustrine environment. 
The MRS, often associated with subaerial exposure, has been utilized as the sequence boundary. 

 
Fig. 3.10. Pas du Lièvre DOM illustrates the organization of cyclicity in the study area. The colored 

lines correspond to the sequence boundaries of the sequences. The numbers 1, 2 and 3 correspond to 
the surfaces that could be traced along the entire cliff of the Cengle Plateau. The other surfaces have 
variable mappability, ranging from tens of meters to a kilometer. This figure was originally published 
as supplementary material. 

3.4.2.2.1. High-frequency vertical stacking patterns 
The products generated by very high-frequency cyclicity are stacked in high-frequency 

sequences, which correspond to ‘elementary sequences’ in line with Strasser et al. (1999) and 
Strasser (2018). These authors define elementary sequences as the shortest units wherein facies 
evolution indicates environmental change. This study identified five distinct patterns of 
elementary sequences (Fig. 3.11), listed below. These patterns encompass two distinct 
anatomies: i) transgressive–regressive (T–R) sequences, which consist of symmetrical 
sequences; and ii) regressive (R) sequences, corresponding to asymmetrical sequences 
(Zecchin, 2007; Catuneanu and Zecchin, 2013; Fragoso et al., 2021). 

3.4.2.2.1.1. Lacustrine T-R sequences 
The first elementary sequence identified within the study area is the lacustrine T–R sequence 

(Fig. 3.11A). This sequence is notable for its exclusive lacustrine deposits (LC facies 
association), comprising both more distal facies, indicative of the transgressive hemi-cycle, and 
shallowing upward, proximal facies, representing the regressive hemi-cycle. This vertical 
stacking pattern is observed in only 7% of the sequences within the Cengle plateau cliff and 
was specifically identified in the Pas de la Vache (22% of the sequences) and Pas de Monsieur 
(14% of the sequences) outcrops. Within this configuration, it is possible to discern both the 
MES, demarcating the transition from a retrogradational stacking pattern to a progradational 
pattern, and the MRS, signifying the shift from a progradational stacking pattern to a 
retrogradational one. 

Interpretation: The lacustrine T–R sequence originates in a lacustrine environment, with the 
stacking pattern reflecting a complete cycle of lake level variation without subaerial exposure. 
This stacking pattern suggests formation in a region located relatively far from the lake edge, 
which experiences reduced susceptibility to very high-frequency lake level fluctuations in 
comparison to the coastal regions of the lacustrine system. Consequently, as a result of greater 
available space for sedimentation, enhanced potential for preservation and hierarchical 
stratigraphic control, the rocks formed and preserved in this environmental position tend to 
exhibit greater thickness.
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3.4.2.2.1.2. Lacustrine–palustrine R sequences 
The lacustrine–palustrine R sequences, as illustrated in Fig. 3.11B, are characterized by the 

coexistence of both lacustrine and palustrine facies. Within this framework, proximal lacustrine 
facies (LC-1 and LC-2) are overlain by palustrine facies, primarily PL-1. The tops of the 
sequences are limited by the MRS, marked by subaerial exposure features corresponding to EI 
2 or 3. This variant accounts for 13% of the identified sequences in the study area, constituting 
45% of the sequences observed in the Pas de la Vache outcrop, 7% in the Pas de Monsieur, and 
10% in the Pas du Lièvre. This configuration was not observed in the La Route outcrop. 

Interpretation: The lacustrine–palustrine R sequences represent upward-shoaling cycles 
(progradational stacking pattern), composed of lacustrine and palustrine facies. The effect of 
very high-frequency drops in the lake level affecting the sediment surface in the upper part of 
the sequence by very short-term subaerial exposure leads to the development of palustrine 
facies. This characteristic allows for the interpretation of sedimentation in a shallow proximal 
environment. The high-frequency lake level drop generates the MRS, delineating the 
elementary sequence boundary and leading to the development of more evolved exposure 
features compared to those present in the palustrine facies at the top of the sequence. 

3.4.2.2.1.3. Palustrine R sequences 
The palustrine R sequences (Fig. 3.11C) consist of vertical stacks composed exclusively of 

palustrine facies (PL-1 to PL-4). This stacking pattern predominates (55% of the total number 
of interpreted sequences) in the study area and has been identified in all four analyzed outcrops 
(33% in the Pas de la Vache, 57% in the Pas de Monsieur, 75% in the Pas du Lièvre, and 33% 
in La Route). Sometimes, a sequence may consist of a single palustrine lithofacies, such as PL-
2. These sequences are bounded by the MRS, associated with subaerial exposure features 
corresponding to EI 3 or 4. 

Interpretation: Palustrine R sequences also represent upward-shoaling cycles composed solely 
of palustrine facies. The MRS that delimits the sequences is generated by high-frequency base 
level drops, resulting in short-term subaerial exposures. At this point, the subaerial exposure 
develops nodular, grainy, and pseudomicrokarst features. When two such sequences overlap, 
the MES is not distinguishable, but it is adjacent to the MRS. In order to form subaqueous facies 
over subaerial exposure features, it is necessary to have created space for deposition. Thus, the 
MES indicates the rise in the lake level and marks a shift in the shoreline of the lake. 

3.4.2.2.1.4. Palustrine–pedogenic sequences 
Palustrine–pedogenic sequences (Fig. 3.11D) can be identified by the presence of palustrine 

facies (PL-2 to PL-4) overlain by pedogenic facies (PD-1 and/or PD-2). This stacking pattern 
corresponds to an evolution of the palustrine R sequence type. In the studied profiles, these 
sequences account for approximately 20% of the sections, with the exception of the Pas de la 
Vache outcrop, where they were absent. In the Pas de Monsieur outcrop, they represent 22%, 
while in the Pas du Lièvre, they account for 10%, and in La Route, 50%. The MRSs are on the 
tops of these sequences and are typically well-defined due to the development of pedogenic 
features corresponding to index 5 of the EI. 

Interpretation: The rocks comprising the palustrine–pedogenic sequences are associated with 
long-term subaerial exposures, during which pedogenic processes intensify. In such contexts, 
when the lake has completely desiccated, leaving no space for sediment accumulation, high-
frequency base level fluctuations influence only the position of the groundwater table and the 
vertical extent of pedogenic transformations. 



94 
 

3.4.2.2.1.5. Amalgamated pedogenic sequences 
The amalgamated pedogenic sequences, as illustrated in Fig. 3.11E, correspond to intervals 

composed exclusively of pedogenic facies (PD-1 and/or PD-2) as an evolution of the 
palustrine–pedogenic sequence type. This stacking pattern accounts for 5% of the interpreted 
sequences in the area, occurring only at the Pas du Lièvre outcrop, where they represent 5%, 
and at the La Route site, where they comprise 17% of the sequences. In these cases, due to the 
more pervasive pedogenesis, primary features are intensely overprinted. This makes the 
identification of sequence boundaries challenging and leads to the overlap of pedogenic 
intervals within several amalgamated sequences. Only when overlapped by other types of 
sequences present in the Cengle cliff, showing an abrupt change in facies, it becomes possible 
to identify the MRS at the top of the sequences. 

Interpretation: The presence of exclusively pedogenic facies suggests pervasive pedogenesis 
associated with prolonged subaerial exposures (even more extended than those interpreted for 
palustrine–pedogenic sequences), resulting in substantial modification of lacustrine and 
palustrine sedimentary deposits. These modifications give these deposits remarkable 
similarities to paleosols. Furthermore, within these intervals, it is possible to observe root 
concretions (represented by columnar structures – Fig. 3.11L) ranging from decimetric to 
metric dimensions and pseudomicrokarst features, indicating the establishment of dense 
vegetation in areas near the lake margins. 

3.4.2.2.2. Small-scale vertical stacking patterns 
Small-scale vertical stacking patterns, or small-scale sequences, correspond to the stacking 

of elementary sequences (Strasser et al., 1999; Strasser, 2018), which, in the study area, have 
an average thickness of 10 m. Small-scale sequences delineate the stratigraphic intervals, as 
described in the following section, and are bounded by maximum retraction surfaces, which are 
mapped throughout the Cengle Plateau cliff. The anatomy of the small-scale sequences varies 
depending on their position within the lake, with a general trend for the thickness of the 
elementary sequences to decrease toward the mid-frequency MRS. Fig. 3.11F–I presents 
examples of small-scale sequences formed in more distal and proximal areas. Fig. 3.11J–K 
illustrates the result of these sequences after being subjected to long-term subaerial exposure 
events. 

The small-scale sequence in the distal area exhibits an upward shallowing trend. This results 
from the evolution of distal and proximal lacustrine facies (lacustrine T–R sequence-type) into 
palustrine facies (lacustrine–palustrine R and palustrine R sequences), demonstrating a trend of 
decreasing accommodation rate conditioned by medium-frequency base level variations (Fig. 
3.11F). In the study area, these sequences are mainly present in the Pas de la Vache (Fig. 3.11G) 
and Pas de Monsieur outcrops. In the more proximal region, a small-scale sequence is 
represented by the superposition of several R-type palustrine sequences (Fig. 3.11H). This 
anatomy is typical of extremely shallow environments, which are constantly subjected to short-
term subaerial exposures, resulting from high-frequency base level variations. Small-scale 
sequences with these characteristics are observed in the Pas de Monsieur, Pas du Lièvre (Fig. 
3.11I), and La Route profiles. 

In both cases, during long-term subaerial exposure periods, conditioned by the medium-
frequency base level drop, pedogenic facies may form. As a result, the sequences will be 
represented mainly at the top by palustrine–pedogenic (Fig. 3.11J) and/or pedogenic 
amalgamated elementary sequences (Fig. 3.11K). The evolution of pedogenic features will be 
proportional to the duration of subaerial exposure. With pedogenetic evolution, it is possible 
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that columnar features generated by root concretions will form, as well as pseudomicrokarst 
features, which could make it difficult to identify high-frequency sequences. 

 
Fig. 3.11. Vertical stacking pattern anatomies at different scales identified in the carbonate rocks of the 

Cengle Cliffs. Letters A to E correspond to elementary sequences or high-frequency sequences: A) 
Lacustrine T−R sequence. B) Lacustrine–palustrine R sequence. C) Palustrine R sequence. D) 
Palustrine–pedogenic sequence. E) Amalgamated pedogenic sequence. F to I correspond to small-
scale sequences: F) Small-scale sequence formed in more distal areas. G) Small-scale sequence found 
in the Pas de la Vache outcrop. H) Small-scale sequence formed in more proximal areas. I) Small-
scale sequence found in the Pas du Lièvre outcrop. J and K represent the effects of long-term 
subaerial exposure on the sequences represented by the letters F and H, respectively. L) Columnar 
features formed by root concretions. Schematics of lake level variation curves and the resulting 
sedimentary records were adapted from the work of Strasser et al. (1999) and Strasser (2018) in 
shallow marine carbonates for the lacustrine–palustrine context. 

3.4.3. Lateral variation in vertical stacking patterns 
Using low-resolution DOM covering the entire extent of the Cengle Plateau cliff, three 

significant MESs of medium frequency were identified. These surfaces were mappable across 
the study area; however, in certain areas, correlations were inferred due to the presence of 
vegetation cover or fallen blocks. These three surfaces were used to divide the study area into 
four stratigraphic intervals, from the base to the top, referred to as Cengle-I, Cengle-II, Cengle-
III, and Cengle-IV. This facilitated a comparison of the vertical evolution and lateral variation 
of stacking pattern sequences within each of these intervals, as illustrated in Fig. 3.12. The 
percentage shown in the text refers to the frequency of occurrence of each type of high-
frequency sequence (elementary sequences) within each stratigraphic interval.
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Fig. 3.12. Correlation and lateral variations (indicated by pie charts) of the types of vertical stacking patterns for the four stratigraphic sections surveyed in the study area. 

The positions of the profiles are shown in the plan view of the Cengle Plateau at the bottom right. Each sedimentary profile is depicted with facies associations and 
sequence types, alongside C and O stable isotope logs and exposure index logs. For details of the sequence types, refer to Fig. 3.11. At the top, Pas du Lièvre DOM 
illustrates the main surfaces (numbers 1, 2 and 3 – red lines) that can be traced along the entire cliff. These surfaces subdivide the cliff of the Cengle Plateau into four 
stratigraphic intervals: Cengle-I to Cengle-IV, from the base to the top. The blue arrow at the bottom of La Route profile indicates a peak of more positive isotopes, 
corresponds to the sample in which calcite pseudomorphs after gypsum were identified. The red arrow indicates the position of the samples with foraminifera. 
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The basal interval, Cengle-I, is the best-preserved, as it was observed at all four survey points 
for stratigraphic sections. However, at the La Route outcrop, only the top of this interval is 
exposed. While sequences with palustrine and pedogenic characteristics (sequences of types C, 
D, and E) predominate in Cengle-I, there is preservation of sequences with lacustrine facies 
(sequences of types A and B) in the Pas de la Vache and Pas de Monsieur outcrops located to 
the west. In the Pas de Vache profile, sequences of types B and C account for 37.5%, while 
sequences of type A constitute 25%. In Pas de Monsieur, sequences of type C amount to 40%, 
while those of types A, B, and D correspond to 20%. At Pas du Lièvre, 67% of the sequences 
are of type C, with 16.5% for each of types D and E. In the La Route outcrop, all sequences 
belong to type D. In the Cengle-I interval, a progressive transition from lacustrine to palustrine 
environments is evident, which, in turn, gradually transitions to the pedogenic environment 
from west to east. 

The Cengle-II interval is characterized by intense pedogenesis. Lacustrine facies are only 
found in the Pas de la Vache section, which records exclusively the base of the Cengle-II 
interval. In the Pas de Monsieur and Pas du Lièvre outcrops, 100% of the sequences are of type 
C, while in the La Route outcrop, sequences of types C, D, and E are equally distributed, with 
each type representing 33.3%. Although this stratigraphic interval still exhibits occurrences of 
lacustrine facies in the Pas de la Vache section, the exclusive presence of palustrine facies in 
the Pas de Monsieur and Pas du Lièvre locations indicates that the lake during deposition of the 
Cengle-II stratigraphic interval was shallow and flat. Minor fluctuations in the lake level were 
sufficient to expand the area dominated by palustrine facies. Furthermore, the identification of 
sequences displaying pedogenic facies associated with palustrine facies in the La Route section 
highlights proximal conditions for this profile. 

In the Cengle-III stratigraphic interval, a prevalence of sequences exhibiting palustrine and 
pedogenic characteristics is observed. Lacustrine facies are exclusively encountered in the Pas 
de Monsieur outcrop, where 40% of the sequences are of type C, 20% of type A, and 40% of 
type D. In Pas du Lièvre, 80% of the sequences correspond to type C, with 20% falling into 
type D. In the La Route profile, 67% of the sequences are classified as type C, and 33% as type 
E. This pattern suggests a return to a depositional configuration akin to that of the Cengle-I 
interval, marked by the presence of lacustrine facies in the Pas de Monsieur section. Notably, 
pedogenic sequences are distinctly present in all three profiles documenting this interval (Pas 
de Monsieur, Pas du Lièvre, and La Route). This evidence indicates prolonged periods of 
exposure, during which pedogenic features, including the common occurrence of root traces, 
developed. It is interesting to observe that, like the Cengle-II interval, the La Route section 
exhibits a reduced number of sequences compared to the other profiles. This suggests that 
pedogenesis played a significant role in obscuring the primary features, making it challenging 
to discern the original sequences. Given the increased sequence thickness, it is plausible that 
these sequences represent an amalgamation of two or more of them. 

The upper interval, Cengle-IV, is preserved only in the Pas du Lièvre and La Route outcrops. 
Lacustrine facies, in the Pas du Lièvre profile, were observed exclusively in this interval, where 
67% of the sequences are type B and 33% type C. Notably, foraminifera of the genus Rosalina 
were identified in thin sections of the Pas du Lièvre profile within this interval. In the La Route 
profile, sequences of type D predominate, accounting for 75%, while the remaining 25% 
correspond to sequences of type C. The occurrence of lacustrine facies and the presence of 
foraminiferal fossils within this interval of the Pas du Lièvre profile are atypical and 
unexpected. These characteristics indicate saline lake water during that period. The 
predominance of pedogenic sequences in the La Route profile reinforces the association of this 
profile, across all stratigraphic intervals, with more proximal conditions compared to the other 



98 
 

profiles studied. This suggests a zonation within the depositional profile, with a transition from 
lacustrine to palustrine, and ultimately to pedogenic environments from west to east. 

3.4.4. U–Pb dating and SEM observation of micrites 
Ten ages from U–Pb analyses performed on various carbonate phases from 6 samples were 

obtained and are presented in Fig. 3.13 and summarized in Table 3.2. All ages were obtained 
using the isochron defined in the Tera–Wasserburg diagram (examples in Fig. 3.13B, C, H). It 
is noteworthy that the samples which yielded TW isochrons do not show very radiogenic 
238U/206Pb, the maximum value is between 50 and 60 in sample R-55 while most of the values 
are <30 (see Fig. 3.13). However, the relatively small analytical uncertainties on 207Pb/206Pb 
due to [Pb] of up to 2.7 µg/g and on 238U/206Pb due to in-depth homogeneity of the samples 
define isochrons that are robust and provide geological meaning to the U–Pb ages. 

 
Fig. 3.13. Isochrons and SEM images for ‘La Barre du Cengle’ limestones. A) Age groups of the study 

area. Geological Time Scale based on Gradstein et al. (2012). B) Isochron representing the late 
cementation event. C) Isochron representing the age calculated for the neomorphism phase. D to G) 
Representative SEM images of the neomorphism event. Yellow lines represent the interpretation of 
the overgrowth of calcite rhombs encompassing small and rounded micrite particles. H) Isochron 
representing the age calculated for the primary micrite. I to L) SEM images representing primary 
microbial micrite. Images in I, J, and L depict shrub-like structures, whereas image K shows filament-
like structures (denoted by the yellow arrows). 
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Table 3.2. Results of U–Pb dating on carbonates from “La Barre du Cengle”. N = sample ID; Ma = 
millions of years; MSWD = mean square weighted deviation; p(χ2) = chi-square test probability; n = 
number of spots for isochron determination. 

1 R-07 (PL-1) Cengle-I Micrite 66.9 ±4.6 ±7.9 2.5 <0.05 150

2 R-55 (PD-1) Cengle-IV Micrite 65.4 ±3.0 ±4.7 1.5 <0.05 102

3 V-40 (PL-4) Cengle-I Micrite + Microcodium 
crystals

63.8 ±7.3 ±10.9 2 <0.05 75

4 R-07 (PL-1) Cengle-I Micrite + early sparite 63.3 ±1.2 ±3.4 2.7 <0.05 118

5 L-04 (PL-1) Cengle-I Micrite + early sparite 58.4 ±2.1 ±4.3 2.8 <0.05 124

6 R-03 (PD-1) Cengle-I Micrite + Microcodium 
crystals

56.7 ±2.1 ±4.4 3.1 <0.05 117

7 R-55 (PD-1) Cengle-IV Micrite + grain coating 56.0 ±1.4 ±2.8 1.1 0.31 58

8 L-06 (PL-1) Cengle-I Micrite 55.6 ±3.2 ±4.6 1.5 <0.05 71

9 R-03 (PD-1) Cengle-I Micrite + Microcodium 
crystals

54.8 ±1.2 ±2.8 1.5 <0.05 187

10 R-55 (PD-1) Cengle-IV Late sparite 43.1 ±2.5 ±3.9 1.8 <0.05 67

p(χ²) n 
spots

Confidence 
interval 

95% (Ma)

2s (including 
syst uncertainty) 

(Ma)
MSWDU-Pb age 

(Ma)N Sample 
(facies)

Stratigraphic 
interval

Analyzed 
element(s)

 

U–Pb analyses, followed by HCA and weighted average calculation (not applicable to the 
third group, represented by a single age), resulted in three distinct age groups (Fig. 3.13A): i) 
64.3±2.5 Ma, derived from measurements conducted on micrite, sparry calcite cements and 
Microcodium crystals; ii) 56.1±1.6 Ma, also obtained from analyses on micrite, sparry calcite 
cements and Microcodium crystals; and iii) 43.1±3.9 Ma, resulting from a single sample, where 
the points generating the isochron were obtained from sparry calcite cement, composed of 
coarse mosaic crystals. 

In order to interpret the dating results, the 100 µm-thick thin sections were analyzed using 
SEM. The analysis focused on the micrite to try to understand the two oldest ages obtained, as 
the most recent age is clearly a diagenetic phase of late cementation in the meteoric realm. After 
thorough investigation, two distinct groups of micrite with characteristics that could elucidate 
the obtained results were identified. 

The first group consists of shrub-like structures, composed of small rounded micrite particles 
(around 0.05 and 0.1 µm) (Fig. 3.13I, J, L). Within these shrub-like structures, microbial 
filament-like structures were identified (Fig. 3.13K). The presence of filaments in SEM images 
of carbonate rocks is often associated with interpreting the influence of microbial activity in the 
formation of the hosting deposits (e.g., Folk, 1993; Bahniuk et al., 2015; Roemers-Oliveira et 
al., 2015). Thus, it is plausible to relate this microbial-origin micrite as primary and associate 
it with the oldest mean age (64.3±2.5 Ma). In addition, calcite spars yielding a similar age 
(sample R-07) likely represent an early stage of meteoric cementation during a subaerial 
exposure associated with high-frequency cyclicity. 

The second group, corresponding to the overgrowth of microrhombic calcite (Fig. 3.13D–
G), encompasses the smaller, rounded micrite particles, interpreted as primary. This 
phenomenon is identified as a phase of neomorphism, which refers to the development of new 
crystals in a rock through recrystallization under temperature and pressure conditions different 
from those under which the rock was originally lithified. As indicated by Boggs (2011), 
neomorphism can affect both carbonate grains and micrite, generally resulting in the 
enlargement of calcite crystal size. Therefore, due to its more recent diagenetic nature, 
neomorphism has been associated with a mean maximum age of 56.0±1.6 Ma. Such 
microcalcite overgrowths likely also developed within Microcodium aggregates as suggested 
by similar ages obtained in sample R-03. In addition, the same range of ages has been obtained 
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for sparry cement (L-04 sample) thus suggesting that a later stage of sparry calcite cementation 
occurred coevally with the formation of microrhombic calcite overgrowths. 

In the context of the obtained ages, sample R-55 is noteworthy, located at the top of the La 
Route profile within the uppermost interval (Cengle IV), recording all three identified age 
events (see Table 3.2). This observation underscores the coexistence of these events within the 
study area. The oldest age obtained in micrite is 65.4±4.7 Ma, thus suggesting a depositional 
age no younger than 60.7 Ma for the Cengle IV interval. 

Regarding sample R-07, positioned in the basal portion of the La Route profile (Cengle-I 
interval), it exhibits the deposition age with the least error. The results from this sample indicate 
a deposition age ranging from 66.7 to 59.9 Ma. Given the well-constrained K/Pg boundary in 
the Arc Basin (below the ‘Calcaire de Vitrolles’ formation, Fig. 3.2), notably evidenced by 
magnetostratigraphic studies (Westphal and Durand, 1990; Cojan et al., 2000), and by the 
distribution of dinosaur eggshells in its continental deposits (Garcia and Vianey-Liaud, 2001), 
it is inferred that the limestone of the Cengle formed after the K/Pg boundary. By calibrating 
the obtained ages with the Geological Time Scale (Gradstein et al., 2012), a Danian to early 
Selandian deposition age can be assigned to the carbonates of ‘La Barre du Cengle’. 

Applying the same rationale to determine the age of neomorphism, sample R-55 stands out, 
displaying the least uncertainty for this event. It indicates an age for neomorphism ranging from 
58.8 to 53.2 Ma, placing it between the Thanetian and Ypresian Stages. 

3.4.5. C and O stable isotopes 
The isotopic composition of whole-rock bulk samples from the Cengle Plateau cliff reveals 

negative δ13C and δ18O values (Fig. 3.14), ranging from −10.85 to −4.76‰ and −7.57 to 
−2.71‰, respectively, relative to the VPDB standard. Despite this wide range, the distribution 
histograms (Fig. 3.14A, B) show that 88% of δ13C data falls within the range of −7.55 to 
−6.67‰, with a mode representing 38% of the data between −7.33 and −7.11‰. Similarly, for 
δ18O, 82% of the values range from −6.82 to −5.82‰, with a mode comprising 31% of the data 
between −6.57 and −6.32‰. In Fig. 3.12, vertical and lateral trends of the δ18O and δ13C isotopic 
signatures for the four profiles and four stratigraphic intervals are also displayed. 

Fig. 3.14C–F depicts the cross-plot of δ18O versus δ13C for 260 of the 262 samples analyzed 
for stable isotopes. Outliers with anomalous data (sample R-13: δ13C = −4.76‰, δ18O = 
−2.71‰; and sample R-49: δ13C = −10.85‰, δ18O = −7.29‰) were excluded from the dataset, 
as they probably represent specific events. A factor potentially contributing to some very 
negative δ13C values is the presence of Microcodium content within these samples, either in the 
form of well-preserved aggregates or as debris. Microcodium crystals are known to exhibit 
markedly negative δ13C values, as evidenced by previous studies (e.g., δ13C −20.7‰ in lamellar 
aggregates reported by Kabanov et al., 2008, and δ13C ranging from −8 to −12.8‰ for ‘corn-
cob’ aggregates in Pujalte et al., 2019). 

A low covariance is observed, with a coefficient of determination (R2) of only 0.2003 (Fig. 
3.14C). Geographical positioning of data (Fig. 3.14D), stratigraphic intervals (Fig. 3.14E), or 
sequence types (Fig. 3.14F) does not reveal clear vertical or lateral trends. As discussed by 
Alonso-Zarza (2003), deciphering isotope data in palustrine-dominated environments is 
challenging due to the influence of meteoric diagenetic processes common in these carbonates, 
which result in the loss of primary markers and data homogenization. 
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Fig. 3.14. Results of δ13C and δ18O isotopic data from the carbonates of the Cengle Plateau cliff. A) 

Histogram of the distribution of δ13C. B) Histogram of the distribution of δ18O. C) Cross plot of δ18O 
versus δ13C for all the samples analyzed. D) Cross plot of δ18O versus δ13C for all the samples labeled 
by profiles. E) Cross plot of δ18O versus δ13C for all the samples labeled by stratigraphic intervals. 
F) Cross plot of δ18O versus δ13C for all the samples labeled by sequence types. The sequence types 
are labeled according to Fig. 3.11. G) Cross plot of δ18O versus δ13C for all the samples with thin 
sections labeled by lithofacies. 

In Fig. 3.14G, stable isotope data were plotted by facies, using only the samples with thin 
sections (n = 138). This selection was made to mitigate errors associated with facies definition 
without proper petrographic control. Table 3.3 presents the variation and averages of stable 
isotope values for each of the interpreted lithofacies for the ‘La Barre du Cengle’. An important 
result is that lacustrine facies are significantly depleted in δ13C and δ18O compared to palustrine 
and pedogenic facies, leading to apparent covariance between δ13C and δ18O (Fig. 3.14G). This 
relationship between depositional facies and isotopic signature suggests that a primary signal, 
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linked to depositional or early diagenetic conditions, has been preserved despite the 
development of late-stage neomorphic features revealed by SEM analyses and U/Pb ages (Fig. 
3.13). As commonly evidenced in many modern and ancient lakes (e.g., Leng and Marshall, 
2004; Horton et al., 2016), the distinct isotopic composition between lacustrine (LC-1 and LC-
2)/distal palustrine (PL-1) facies and more proximal palustrine (PL-2 to PL-4)/pedogenic (PD-
1 and PD-2) facies may result from distinct freshwater inflow–evaporation balance, the 
lacustrine/distal palustrine facies being associated with more freshwater inflow and the 
proximal palustrine/pedogenic facies being related to more evaporated water. Such an 
interpretation is strongly supported by results from the Road profile where a significantly δ18O 
and δ13C-enriched composition occurs at the base of the section (indicated by the blue arrow in 
Fig. 3.12). This peak corresponds to the sample in which calcite pseudomorphs after gypsum 
were identified, indicating a period of increased aridity and the development of evaporites in 
proximal areas. This interpretation implies, therefore, that lake level variations are forced by 
changes in water inflow–evaporation balance in the lake and supports the interpretation of 
allocyclicity for elementary and small-scale sequences. 

Table 3.3. Variation and averages of δ13C and δ18O stable isotope values by lithofacies for samples with 
thin sections in the study area. Values in ‰, relative to the VPDB standard. 

LC-1: Microcodium-bioclastic 
wackestone and packstone

16 −7,59 to −6.62 −7.19 −6,90 to −5.86 −6.52

LC-2: Intraclastic 
wackestone–packstone

4 −7.23 to −7.13 −7.19 −6.81 to −6.23 −6.51

PL-1: Cracked mottled 
limestones

31 −7.67 to −6.81 −7.20 −7.08 to −5.48 −6.46

PL-2: Nodular-brecciated 
limestones

40 −7.58 to −6.52 −7.06 −7.28 to −4.89 −6.26

PL-3: Intraclastic 
packstone–grainstone

4 −7.32 to −6.75 −7.11 −6.92 to −5.82 −6.50

PL-4: Pseudomicrokarstic 
limestones

16 −8,68 to −5.86 −7.25 −6.77 to −5.37 −6.36

PD-1: Pisolithic mottled 
intraclastic limestones

19 −7.61 to −6.76 −7.16 −6.91 to −5.50 −6.37

PD-2: Microcodium  mottled 
limestones

8 −8.05 to −6.13 −7.06 −6.55 to −5.33 −6.09

δ18O average 
(‰ VPDB)

δ13C average 
(‰ VPDB)

δ18O variation 
(‰ VPDB)

Lacustrine               
(LC)

Palustrine                
(PL)

Pedogenic               
(PD)

Facies 
association Lithofacies δ13C variation 

(‰ VPDB)
Number of 
samples

 

3.5. Discussion 

3.5.1. Depositional model of a palustrine-dominated lake margin 
As properly discussed by Alonso-Zarza and Wright (2010a), palustrine carbonates can occur 

in depositional settings characterized by very low gradients of the lake margin and low energy. 
Fine-grained carbonates, primarily muds, formed in freshwater, are subjected to subaerial 
exposure related to fluctuations in the water level. Pedogenic processes modify the carbonate 
substrates, giving rise to a variety of palustrine facies and microfabrics, as reviewed by Freytet 
and Verrecchia (2002). Since the studies by Freytet (1965, 1971), palustrine carbonates have 
been conceptualized as products of pedogenic modification of non-marine carbonates. 

Based on investigations of recent palustrine carbonates in the Florida Everglades, United 
States (Platt and Wright, 1992), it has been observed that desiccation cracks result from 
subaerial exposure lasting approximately 4.5 months annually. Consequently, these subaerial 
exposures, responsible for the formation of palustrine features, are regarded as seasonal and 
occur at very high frequency. Prolonged subaerial exposure, which occurs less frequently, is 
responsible for the transformation of lacustrine or palustrine facies into pedogenic ones. This 
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occurs under two conditions: first, during prolonged lake level drops that expose significant 
areas of the sedimentary environment, and second, in the shoreline area. The latter is more 
likely to remain under subaerial exposure for an extended period as it is the first to emerge and 
the last to be submerged. Thus, the higher proportion of pedogenic facies in the La Route profile 
indicates a more proximal condition compared to the other profiles studied. 

An overview of the depositional environment dominated by palustrine conditions is 
presented in Fig. 3.15. Lacustrine facies are formed in submerged conditions. Palustrine 
environments, however, occupy the zone between the minimum and maximum lake levels. In 
the emergent portion, always under subaerial exposure, pedogenic facies are developed and 
exhibit intrinsic soil and calcrete characteristics. Changes in the lake shoreline over time altered 
its paleogeography, resulting in the overlapping of different subenvironments (lacustrine, 
palustrine, and pedogenic) at the same geographical location. Vertical facies successions reflect 
lateral changes in the depositional environment due to variations in the base level. Due to the 
flat surfaces, even minor lake level drops are sufficient to expose and pedogenize a significant 
portion of the area. These factors have contributed to palustrine conditions predominating over 
lacustrine ones in the investigated area. 

The predominant component in the rocks of the studied area is micrite, corresponding to 
primary lacustrine mud (sometimes with pedogenesis features overprinted), typical of low-
energy and low-gradient lakes. SEM analysis revealed shrub-like and filament-like structures, 
suggesting that this micrite was generated by microbial activity. Microcodium debris plays a 
significant role in the carbonates of ‘La Barre du Cengle’. In situ aggregates of rosettes and 
lamellar Microcodium occur in association with pedogenic facies, while dissociated prism 
debris is abundant in both palustrine and lacustrine facies. Freytet and Plaziat (1982) noted that 
Microcodium prisms can be dissociated and corroded due to water circulation, reflecting the 
cyclic nature of lake level fluctuations. These crystals, formed in emergent areas, were 
reworked and transported to submerged zones after base level rise.  

Analyzing the stratigraphic intervals (Cengle I to Cengle IV), a consistent pattern emerges: 
lacustrine facies predominate to the west (e.g., Pas de la Vache and Pas de Monsieur outcrops), 
while pedogenic facies are more abundant to the east (e.g., Pas du Lièvre and La Route profiles). 
The transitions between lacustrine, palustrine, and pedogenic environments consistently occur 
from west to east over time. Based on observed facies transitions along the section depicted in 
Fig. 3.12, the complete transition of lacustrine > palustrine > pedogenic settings within the same 
stratigraphic interval (e.g., Cengle I and II) occurs within approximately 4 to 5 km. This pattern 
parallels the model proposed by Armenteros et al. (1997) for the transition from lacustrine to 
palustrine facies in the Bembridge Limestone (Late Eocene, England). 

Identifying contemporary environments that closely resemble ancient settings is challenging, 
but certain regions have been suggested as modern analogs for palustrine deposits. Examples 
include the wetlands of ‘Las Tablas de Daimiel’ in Spain (Alonso-Zarza et al., 2006), the 
Florida Everglades in the United States (Platt and Wright, 1992), and more recently, the Sian 
Ka'an area in the Yucatán Peninsula, Mexico (Platt and Wright, 2023). The Florida Everglades 
and Sian Ka'an represent extensive, shallow carbonate marshes with diverse subenvironments, 
including freshwater lakes and brackish lagoons with a clear marine influence. Therefore, the 
‘Las Tablas de Daimiel’ wetlands in Spain serve as the most suitable analog for the palustrine 
deposits of the ‘Calcaire de St Marc’ Formation, particularly in the region of the Cengle Plateau. 
These wetlands exhibit a sedimentary record similar to ancient palustrine carbonates, with 
palustrine limestone formation primarily occurring along the margins of shallow lakes. 
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Fig. 3.15. Depositional profile for palustrine-dominated lake margin. The profile is derived from the model proposed by Alonso-Zarza (2003) and adapted to the lithofacies 

and components identified in the carbonates of the Cengle Plateau cliff. While the model is not to scale, the transition between lacustrine, palustrine and pedogenic 
environments in the studied area is estimated to be on the order of 5 km.
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3.5.2. Depositional sequence development 
The mechanisms driving the formation of high-frequency depositional sequences, associated 

with fluctuations in the base level, have been detailed in section 3.4.2.2.1 and illustrated in Fig. 
3.11. During periods of high-frequency oscillations in lake levels, the sedimentary record 
undergoes construction and modification, resulting in facies preservation over geological time. 
While direct evidence of lake level drops is evident primarily in elementary sequences of types 
D and E, where thick pedogenetic profiles are identified, correlations between the sections (Fig. 
3.12) reveal lateral transitions to sequences of types A, B, or C, indicating that these also result 
from lake level fluctuations. 

The high-frequency depositional sequences present challenges in correlation. Nevertheless, 
these high-frequency sequences collectively give rise to medium-scale sequences, delineated 
by the stratigraphic intervals Cengle-I to Cengle-IV, which are traceable along the entire Cengle 
Plateau cliff. As evidenced by Magalhães et al. (2020) and Fragoso et al. (2021), mappability 
decreases with increasing frequency. High-frequency allocyclic sequences in outcrops tend to 
exhibit smaller lateral extents compared to medium and low-frequency sequences. 

Hence, repeated vertical stacking patterns, clearly cyclical in nature, along with frequent 
exposure features marking base level falls (also denoted by isotopic signatures), which organize 
into mappable medium-scale sequences, evidenced by a general trend of decreasing thicknesses 
of the elementary sequences toward the medium-frequency MRS indicate allocyclic control 
over the sedimentation of the carbonates of ‘La Barre du Cengle’. 

Cojan (1993), in her study of other intervals from Late Cretaceous and Paleogene in the Arc 
Basin, had already suggested that the deposition of carbonate formations was controlled by the 
climate. This observation is in line with the interpretation of this study, which places climate as 
the main responsible for the cyclical high and low frequency variations in the lake level. Wetter 
periods lead to lake level rises, increasing the area covered by water. Conversely, drier periods 
expose a substantial portion of the lake subaerially, giving rise to extensive pedogenic facies. 

Due to the complex sedimentary dynamics in palustrine-dominated environments, the 
outcomes generated and preserved depend on the specific basin position under analysis. 
Following an examination of various vertical stacking patterns observed in the study area and 
prior discussions, a conceptual model is proposed (Fig. 3.16) for the deposition of outcropping 
limestones in ‘La Barre du Cengle’. The model simulates the sedimentary record's outcome 
based on lake level curves at two different frequencies and positions over time. The two 
presented frequencies correspond to the long-term lake water level control (medium-frequency 
cycles) and short-term variations (high-frequency cycles). The longer wavelength, lower 
frequency curve governs the long-term lake water level, while the higher frequency curves 
control short-term lake level fluctuations. 

After a medium-frequency base level fall, the entire sequence may experience subaerial 
exposure, resulting in pedogenic facies that may obscure and complicate the identification of 
high-frequency sequences due to advanced pedogenesis stages. During periods of subaerial 
exposure, deposition halts, leading to condensed time intervals on maximum retraction 
surfaces, with durations depending on the associated order. Although estimating this time 
precisely is challenging, the exposure index serves as a relative time indicator, distinguishing 
between very short, short and long-term subaerial exposures. 
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Fig. 3.16. Conceptual model of deposition and stacking patterns for the carbonates of the Cengle Plateau cliff for the proximal (A) and distal (B) regions over T1 to T14. 

Each time step represents a high-frequency cycle. During T1 and T2 in position A, and T1 in position B, there is no deposition due to the rise in the base level will first 
restore the water table level.
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Due to differences in accommodation space, potential of preservation and sediment supply, 
distinct stacking patterns and preserved sedimentary records characterize areas A (proximal 
area) and B (lake center area) differently. In position A, with a low positive accommodation 
rate and lower sediment preservation due to repeated subaerial exposures thicknesses tend to 
be smaller, featuring vertical stacking patterns of palustrine R sequences, palustrine–pedogenic 
sequences, and amalgamated pedogenic sequences. Conversely, in position B, characterized by 
a high positive accommodation rate, and higher sediment preservation due to scarcer subaerial 
exposures, thicknesses tend to be larger, with predominating stacking patterns of lacustrine T−R 
sequences, lacustrine–palustrine R sequences, and palustrine R sequences. This variation 
justifies the observed thickness disparity in the deposits of the Cengle Plateau cliff toward the 
east, decreasing from 35 m to about 20 m in thickness, where the proportions of pedogenic 
facies gradually increase. In addition, such a difference in accommodation space between A 
and B was probably triggered and maintained over time by a difference in the rate of tectonic 
subsidence between the margins and the axial zone of the Arc syncline. It is crucial for 
preserving generated palustrine and pedogenic features that the lake base level rises anew, 
preserving the preceding sedimentary deposit and initiating a new low-frequency deposition 
sequence, perpetuating the process. 

Identifying the time associated with the cyclic climate-controlled character in the study area 
poses a significant challenge, primarily due to the lack of age data with adequate resolution. 
U−Pb dating measurements obtained for the Cengle Plateau limestones feature an average error 
margin of 4 million years, exceeding the expected deposition time for the observed sequences, 
whether at high or medium frequencies. Studies combining magnetostratigraphy with U−Pb 
dating data could help constrain the timescale and establish a suitable temporal framework to 
address the issue of dating depositional sequences. Given the wide influence of astronomical 
cycles on climate, these mechanisms are presumed to be responsible for the cyclic patterns 
observed in the studied area. These astronomical cycles control insolation on Earth (Jouzel et 
al., 2007; Hinnov, 2013; Oliveira et al., 2017; Fragoso et al., 2021), thereby influencing climate 
dynamics. It is hypothesized that high-frequency cycles may be linked to suborbital cycles (<10 
thousand years), reflecting the expected sedimentary dynamics in palustrine environments and 
the limited correlation potential of high-frequency sequences. Conversely, lower-frequency 
cycles, with their greater mappability, could be associated with shorter-duration orbital cycles, 
such as precession (~20-ky), as linked by Kruiver et al. (2002) to each 6-meter-thick late 
Miocene palustrine–alluvial continental sequences of Librilla (SW Spain). 

3.5.3. Later diagenetic evolution and burial history  
Based on petrographic and SEM analyses, two late diagenetic events have been identified 

and dated. The first corresponds to neomorphism, characterized by the calcite overgrowth phase 
on micrite particles, dated to the Thanetian–Ypresian. Given that the rocks outcropping in the 
Cengle cliff were deposited during the Danian–Selandian, it is reasonable to infer that ‘La Barre 
du Cengle’ was already sufficiently buried in a meteoric phreatic environment conducive to the 
development of calcite overgrowths by around 56 Ma ago. This burial must have reached its 
peak when the overlain ‘Calcaire de Langesse’ and ‘Calcaire de Montaiguet’ formations were 
deposited. The Palette mammal deposit (Savage et al., 1965; Godinot, 1984; Godinot et al., 
1987), located at the top of the ‘Calcaire de Langesse’ Formation (Durand, 1984), is well dated 
to the Early Ypresian (Godinot, 1984; Godinot et al., 1987). Lastly, a late meteoric cementation 
phase during the Lutetian–Bartonian (43.1±3.9 Ma) was identified. 
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3.5.4. Paleoclimatic and paleogeographic implications 
Currently, the deposits of the ‘Calcaire de St Marc’ Formation, including the Cengle 

limestones, are interpreted as Thanetian–Ypresian in age (Cojan et al., 2000; Angst et al., 2015; 
Tortosa and Leleu, 2020). This formation encompasses the globally recognized 
Paleocene−Eocene Thermal Maximum (PETM), an episode of extreme global warming lasting 
150 to 200 thousand years, occurring from the late Paleocene to the early Eocene (e.g., Zachos 
et al., 1993, 2005). In the Arc Basin, a negative δ13C anomaly, associated with paleomagnetic 
data, led Cojan et al. (2000) to place the PETM within the ‘Calcaire de St Marc’ Formation. 
However, the results of this study, based on U–Pb dating on carbonates from the Cengle Plateau 
cliff, indicate a Danian to early Selandian age, meaning 5 million years before the PETM. 

Tanrattana et al. (2020) conducted a study on climatic evolution in Western Europe based 
on leaf physiognomy. The analysis of data from three Paleocene localities, two in France 
(Sézanne and Menat) and one in Belgium (Gelinden), led to the conclusion that the Paleocene 
began with relatively warmer and moister conditions, with a cooling observed during the 
Selandian. Subsequently, a gradual increase in temperature and precipitation amplitude was 
observed during the Selandian until the PETM. In general, the climate in Europe was warmer 
and drier in the Early Eocene (e.g., deposits generated during the PETM in the Tremp-Graus 
Basin, Spain – Payros et al., 2022, and in Sardinia – Murru et al., 2003). 

The Cengle cliff carbonates were deposited at latitudes like the present-day, between 40 and 
45°N. According to Arostegi et al. (2011), who used clay mineralogies from continental– 
coastal sequences of the Pyrenean Basin, adjacent to the Arc Basin, for paleoclimatic 
interpretations, the Paleocene climate was warm, with variations between aridity and humidity, 
with periods of more pronounced aridity during the late Danian and early Selandian. 

Palustrine carbonates, sensitive to climate, do not form in extremely arid or humid 
conditions, but are favorable in subarid and subhumid climates (Alonso-Zarza, 2003). In 
subhumid climates, these deposits tend to show a higher organic matter content, while in semi-
arid climates, they exhibit prominent pseudomicrokarst development at the top of sequences, 
where organic matter is scarcely preserved. Regarding the predominance of Microcodium, its 
presence may indicate an arid/semi-arid climate context, often associated with calcretes whose 
formation requires pronounced dry seasons (Wright and Tucker, 1991). 

Based on the above, in the paleoclimatic context, the deposition of the Cengle Cliff 
carbonates in the study area occurred within a warm subarid climatic setting, characterized by 
intercalations between drier and wetter conditions, which resulted in fluctuations in the lake 
level. At orbitally controlled frequencies (high and medium frequencies), lacustrine facies 
formation predominates during wetter periods (accompanied by the generation and transport of 
Microcodium-debris into the lake), while pedogenic transformations (and the generation of in 
situ Microcodium aggregates in subaerially exposed areas) predominate during drier periods. 
Obviously, even drier climates with intense evaporation must have occurred at specific times 
and could, for example, have been responsible for the formation of gypsum deposits observed 
at the base of La Route section at the top of the Cengle-I stratigraphic interval (blue arrow in 
Fig. 3.12). On the other hand, the very high frequency (seasonal, annual) lake level fluctuations 
were responsible for the development of palustrine facies in the wetland belts along the 
shoreline of Cengle Lake. 

In the paleogeographic context, the analyzed rocks originated in a lacustrine system, where 
fluctuations in the lake base level, controlled by climatic variations, constantly modified the 
paleogeography resulting in shifts of the lake shoreline. 
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The presence of benthic foraminifera at the top of the Pas du Lièvre section (red arrow in 
Fig. 3.12), within the Cengle-IV stratigraphic interval, was noted. Although foraminifera can 
occur in lacustrine environments (Flügel, 2010), their presence often indicates an increase in 
salinity, but not necessarily a direct connection to the sea. As highlighted by Lettéron et al. 
(2017, 2018), benthic foraminifera can inhabit saline lakes not connected to the sea, as 
evidenced by the studies conducted by Cann and De Deckker (1981) in Australia and Plaziat 
(1991) in Egypt. Long-distance transport by birds may explain the colonization of foraminifera 
in isolated lakes, as documented by Patterson et al. (1997) in Holocene lakes. Lettéron et al. 
(2017) describe various ways in which lakes can become more saline over time, including 
leaching of salt formations and subsequent salt concentration through evaporation, mixing with 
hydrothermal fluids, connection to the sea through structural corridors or groundwater inflows, 
exhumation of salt diapirs, and accumulation of marine aerosols over an exposed continent. In 
the Arc Basin, the leaching of Triassic evaporites outcropping in the drainage area, such as in 
surrounding massifs (Etoile and Sainte-Baume) resulting from Pyreneo-Provençal 
structuration, may have significantly enriched the lake water in sulfate. 

The age of the Cengle limestones being Dano–early Selandian, as indicated by U–Pb dating, 
may suggest a potential relationship between increased salinity and marine transgression events 
recorded in Bas-Languedoc during the late Danian and early Selandian (Combes et al., 2007, 
2008; Peybernès et al., 2014) as presented in paleogeographic reconstructions in Fig. 3.17. 
Combes et al. (2007) identified three marine transgression events dated at 62.5 Ma, ~61 Ma, 
and ≥59.2 Ma, based on microfauna in marine deposits filling paleokarsts. Although such 
marine channels and gulfs did not reach the studied region near Aix-en-Provence, they may 
have influenced lake salinity through underground hydrodynamics, with salt concentration 
possibly intensified by evaporation. 

 
Fig. 3.17. Paleogeographic reconstructions maps. A) Paleogeography of the Pyrenees from early 

Paleocene (Danian–Selandian) after Calvet et al. (2021), showing hypothetical marine pathways 
(after Combes et al., 2007) to Arc Basin. B) Paleogeography of the Arc Basin from the same period 
after Leleu and Tortosa (2020). 
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3.6. Conclusion 
The detailed analysis of lithofacies, vertical stacking patterns, and lateral facies variations, 

combined with the investigation of carbon and oxygen isotopic data, along with U–Pb dating 
on carbonates in the limestone outcrops of the Cengle Plateau cliff, has provided relevant 
insights into the interaction of lacustrine, palustrine, and pedogenic environments. This 
integrated approach not only enhances the understanding of sedimentary processes but also 
contributes to a more comprehensive view of environmental dynamics in palustrine-dominated 
depositional sequences: 

- In this depositional context, the proposed conceptual model and exposure index 
underscore the importance of facies analysis, their anatomies, stacking patterns, and 
hierarchies. These aspects reflect climate and paleogeographic changes in the basin, 
controlling not only sedimentary dynamics but also influencing the preservation process 
in the geological record. These findings are not only applicable in other areas with 
similar sedimentary contexts but also possess predictive value, anticipating the types of 
facies, their extensions, and thicknesses based on the position of the basin (proximal or 
distal). 

- In the studied area, the recurrence of depositional sequences, influenced by high-
frequency fluctuations in lake level, highlights the importance of pedogenesis in the 
formation of these deposits, with palustrine conditions prevailing over lacustrine ones. 
Long-term subaerial exposures, controlled by low-frequency fluctuations in the base 
level, form pedogenic facies, mainly at the top of lower-order stratigraphic sequences 
and in coastal regions of the lake. 

- The allocyclic nature of the deposition of the limestones of ‘La Barre du Cengle’ is 
indicated by the recurrence of elementary sequences, organized into small-scale 
sequences, which are mappable throughout the area, combined with hierarchical 
stratigraphic control, wherein lower hierarchies impose restrictions on higher 
hierarchies. Despite the challenge in dating different frequencies controlling lake level 
variation, cyclic climatic variations, potentially linked to orbital and suborbital cycles, 
appear to shape the observed sedimentary record. 

- The deposition age of the carbonates of the Cengle Plateau cliff has been assigned to 
the Danian to early Selandian. 

- In the paleoclimatic scenario of the deposition of the studied carbonates, subarid 
climatic conditions predominated. Microcodium in situ aggregates formed under the 
influence of drier climates and were reworked and transported as debris to the lake 
during wetter periods. 

- In paleogeographic terms, cyclic high and medium-frequency fluctuations in the base 
level modified the paleogeography of the lake over time and space. The presence of 
benthic foraminifera at the top of the section indicates salinity variations, possibly 
influenced by marine transgressions. 
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Supplementary table 
Table S3.1. Laser ablation ICP-MS parameters used for dating. 

Sample preparation ~30 or ~100 µm slices
Imaging Optical

Make, Model & Type ESI, NWR193

Ablation cell & size TV2 150mmx150mm

LASER wavelength (nm) 193

Pulse duration (ns) 4

Fluence (J.cm-2) 0.9 - 1.4

Repetition rate (Hz) 15

Spot size (µm) 150

Sampling Spot

Carrier gas He 5.0 ~0.9 l.min-1, Ar make-up gas ~1 l.min-1 combined using a Y-piece 
~50cm before the connection to the injector

Ablation duration (s)
3s warmup - 4 s preablation - 15 s washout - 3s warmup - 20 s ablation - 15 

s washout 

Make, Model & Type Thermo Fisher Scientific, Element XR

RF Power (W) 1200 - 1300

Make-up gas flow (l.min-1) ~1

Detection System SEM forced in counting mode

Masses measured 206Pb, 207Pb, 208Pb, 232Th, 238U 

Integration time per peak (s) 0.04, 0.04, 0.02, 0.012, 0.012

Total integration time per cycle (s) 0.129 // Mass accuracy option

Sensitivity ~100 kcps for 823 ng/g U

IC dead time (s) 26

Gas blank
on-peak zero substraction, ~7s signal intensity integration during the 

washout between each preablation and ablation

Calibration

Daily tuning with NIST-612 then during sequence analyses use of NIST-614 
glass standard as primary reference material for drift (Woodhead and Hergt, 

2001); WC-1 carbonate reference material for matrix matching of 
206Pb/238U; AUG-B6 as secondary material; JCP1-np from myStandards 

GmbH for [U], [Pb], [Th] calibration

Reference material info WC1 (Roberts et al. 2017) and AUG-B6 (Pagel et al. 2018)

Data processing

Raw intensities, baseline subtraction, calulation of log-ratios with Iolite 3.65 
(Paton et al, 2011)

Instrumental drift check, geometric averages of the ratios and 206Pb/238U 
ratios corrections using a fractionation factor calculated from WC1 

radiogenic intercept with the concordia, exclusion of spots with mean 207Pb 
intensities  using a cutoff value calculated by adding ten times the standard 
deviation to the average baseline intensity on 207Pb for each session using 

an in-house Excel spreadsheet
IsoplotR (Vermeesch, 2018) for T-W isochrons (model-1), 2s as input, 95% 
confidence interval as output, intercept ages and initial Pb compositions

Mass discrimination 1 set of standards every ~75 spots

Common-Pb
correction,

composition and
uncertainty

None applied. Ages calculated from regressions used in Tera
Wasserburg plots

Uncertainty level &
propagation

Ages are quoted at 95% confidence interval including the propagation of 
systematic uncertainty by quadratic addition of 2.5% on WC1 age and an 
extra 3.5% to account for the uncertainty on AUG-B6 secondary standard 

which is still under evaluation through an inter laboratory comparison

Quality control /
Validation

AUG-B6  - mean age: 42Ma±2Ma (2SD, n=3) in agreement with the age 
published by Pagel et al (2018): 43Ma±1.5Ma

Sample preparation

LASER ablation system U-Pb dating

Data processing U-Pb dating

ICP-MS system U-Pb dating
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 « Que ta vision soit à chaque instant nouvelle. Le sage est celui qui s'étonne de tout. » 

André Gide, Les nourritures terrestres (1897) 

 

 

 

 

 

 

 

Chapter 4 

Salta Basin 



122 
 

This chapter is based on the article accepted for publication in Marine and Petroleum Geology 
on October 6, 2025.  
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Abstract 

Digital Outcrop Models (DOMs), empowered by advanced digital techniques, have 
revolutionized the study of outcrop analogs for petroleum reservoir characterization by enabling 
the extraction of key quantitative parameters for modeling. The limited availability of 
subsurface data often constrains reservoir characterization, making outcrop analogs essential 
tools for improving geological models. The analogs bridge the gap between borehole-derived 
information and regional-scale seismic data, providing crucial mesoscale insights. In this 
context, this study proposes an integrative workflow combining high-resolution sequence 
stratigraphy (HRSS) with digital techniques to enhance the understanding of depositional 
settings and extract data from the Balbuena III Sequence of the Salta Basin, Argentina, a well-
established stratigraphic basin analog for Brazilian pre-salt carbonate reservoirs. The workflow 
combines traditional field-based methods with advanced digital techniques applied to 
photogrammetric data, including Local Binary Pattern (LBP) analysis and Convolutional 
Neural Networks (CNNs). LBP analysis correlated with stratigraphic interpretation 
demonstrated promising potential for characterizing the high-frequency cyclicity observed in 
the study area. CNN-based segmentation classified and delineated eleven lithofacies, including 
carbonate, siliciclastic, mixed, and volcanic facies. This segmentation allows for the generation 
of lithofacies-classified 3D point clouds and a detailed spatial representation of facies 
distribution across the outcrop. Digital approaches enable more in-depth analysis by increasing 
efficiency, accuracy, and the capacity to analyze large datasets. By combining digital and 
traditional methods, this work improves the analysis of outcrop analogs, which contributes to 
more accurate geological modeling and enhances the predictive capability of petroleum fields 
and hydrocarbon recovery. 

Keywords: Digital Outcrop Models (DOMs); High-resolution sequence stratigraphy (HRSS); 
Lacustrine carbonates; Photogrammetry; Lithofacies classification; 3D point clouds; 

4.1. Introduction 
Effective reservoir management depends on accurate characterization, which can establish 

critical parameters such as the dimensions of sedimentary bodies, their connectivity, the vertical 
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and lateral organization of intervals with good porosity and permeability, and the identification 
of key sealing intervals. These elements directly improve hydrocarbon recovery forecasts 
(Kenter et al., 2010; Marques et al., 2020; Magalhães et al., 2020). However, such 
characterization is challenging due to inherent limitations in subsurface data acquisition. While 
seismic data provides a broad regional structural view, their vertical resolution is limited. 
Conversely, well data offer high-resolution vertical details but lack lateral continuity. 

Outcrop analogs have been extensively used to improve the geological characterization of 
reservoirs and address these constraints (Grammer et al., 2004; Hodgetts, 2013). These studies 
offer mesoscale continuity, generally absent in subsurface datasets, and provide valuable 
insights into facies distribution, depositional architectures, stacking patterns, and internal 
heterogeneity of reservoirs. Thus, outcrops bridge regional-scale seismic interpretations and 
localized borehole observations (Pringle et al., 2004; Jones et al., 2011; Howell et al., 2014; 
Yeste et al., 2021). Integrating outcrop-derived data with numerical models has proven effective 
in refining reservoir simulations and reducing geological interpretation uncertainties (da Silva 
Bomfim et al., 2025). 

In recent years, Digital Outcrop Models (DOMs) have significantly advanced the 
quantification of geological data in the field by enabling the systematic extraction of essential 
parameters for reservoir modeling (Hodgetts, 2013). The widespread use of high-resolution 
digital cameras and LiDAR (Light Detection and Ranging) sensors, often mounted on Remotely 
Piloted Aircraft Systems (RPAS), has greatly boosted the generation of these models (Marques 
et al., 2020; Villarreal et al., 2020; da Silva Bomfim et al., 2025). DOMs have become 
fundamental tools in outcrop-based studies, allowing for virtual revisits, improving the 
interpretation of structures and stratigraphy in digital environments, and supporting more robust 
quantitative analyses (Bellian et al., 2005; Jones et al., 2011; Burnham and Hodgetts, 2019). 
Furthermore, they enable imaging of outcrops in remote or hard-to-access areas, aligning with 
innovative workflows such as those proposed by Villarreal et al. (2022). 

The application of DOMs spans multiple geoscience disciplines, including reservoir 
modeling (e.g., Pringle et al., 2004; Buckley et al., 2006; 2009; Zhanfeng et al., 2015; Cabello 
et al., 2018; Siddiqui et al., 2019), structural geology and karst systems (e.g., Corradetti et al., 
2018; Larssen et al., 2020; Villarreal J et al., 2020; Janocha et al., 2021; Panara et al., 2023; 
Pereira et al., 2024), as well as stratigraphy and sedimentary geology (e.g., Bellian et al., 2005; 
Fabuel-Perez et al., 2010; Javernick et al., 2014; Bilmes et al., 2019; Li et al., 2019; Priddy et 
al., 2019; Freitas et al., 2021; Roisenberg et al., 2022). 

In general, the outputs generated during the construction of DOMs, such as dense point 
clouds, 3D meshes, and textured models, can be integrated into three-dimensional modeling 
software or virtual reality environments. These products enable geological interpretation, data 
extraction, and multiscale analysis. Tools described in the literature allow for automatic (e.g., 
Kudelski et al., 2010; Vöge et al., 2013; Zhang et al., 2018) or semi-automatic (e.g., Kudelski 
et al., 2009; Gigli and Casagli, 2011; Riquelme et al., 2014) mapping of discontinuities based 
on point clouds and meshes. The automated or semi-automated detection of such features has 
significantly improved discontinuity identification, expanding its application in structural 
geology, particularly in the fracture mapping. 

In sedimentary geology, however, the identification of geological bodies from DOMs 
presents additional challenges, including (1) the complex geometries of sedimentary bodies, (2) 
the variability of their internal structures, and (3) the need for prior stratigraphic framework 
knowledge to accurately interpret the extracted information. Such interpretations are typically 
performed manually and demand significant expertise and time (e.g., Khanna et al., 2020; 
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Ramdani et al., 2022a, 2022b). These approaches often integrate valuable field observations, 
which is crucial for acquiring key quantitative parameters for reservoir modeling. However, 
they still rely on labor-intensive workflows. 

Recent advances in computer vision and machine learning have enabled new strategies for 
extracting geological information from DOMs. For example, Local Binary Pattern (LBP) 
analysis has been successfully applied to structural and stratigraphic interpretation tasks, such 
as detecting paleoseismic events from fault scarps (Viseur et al., 2022). Convolutional Neural 
Networks (CNNs) have been used for lithofacies classification across various types of 
geological data, including outcrop images (e.g., Malik et al., 2022), 3D models (e.g., Sato et al., 
2025), hand samples (e.g., Fan et al., 2020; Jeong et al., 2020; Liu et al., 2020), cores and well 
logs (e.g., Pires de Lima et al., 2019; Shehata et al., 2021; Zhang et al., 2021; Falivene et al., 
2022), and petrographic thin sections (e.g., Cheng and Guo, 2017; Koeshidayatullah et al., 
2020; Liu and Song, 2020; Xu et al., 2022; Genesis et al., 2024). 

This study proposes an integrative workflow to improve the understanding of depositional 
environments, facies architecture, and cyclic stacking patterns within the Balbuena III 
Sequence, located in the southern part of the Salta Basin, within the Metán-Alemanía Sub-
basin. Most of the studied outcrops are located near the Cabra Corral reservoir, where well-
exposed carbonate and mixed deposits occur (Fig. 4.1). These outcrops are considered 
stratigraphic analogs for the Brazilian pre-salt carbonate reservoirs (e.g., Bento Freire et al., 
2011; Raja Gabaglia et al., 2011; Lykawka et al., 2012; Terra et al., 2015; Magalhães et al., 
2020; Fragoso et al., 2024), whose commercial discovery occurred in 2006 (Bueno de Moraes 
et al., 2024; Pedrinha and Artagão, 2024). The workflow integrates traditional field methods, 
such as stratigraphic descriptions, gamma-ray profiling, and thin-section analyses, with 
advanced digital techniques, including LBP and CNNs integrated with photogrammetry, to 
enable quantitative data extraction and automated lithofacies classification. While a similar 
CNN-photogrammetry approach has been previously applied (Guadagnin et al., 2025), the 
present study builds upon it by targeting a broader range of lithofacies in a more geologically 
complex setting. 

 
Fig. 4.1. Location map of the Salta Basin and its sub-basins, including isopachs of the Yacoraite 

Formation (modified from Marquillas et al., 2011), with a red rectangle highlighting the study area. 
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4.2. Geological setting 
The Salta Group Basin (Turner, 1958), also referred to as the Salta Basin (Marquillas et al., 

2005), extends across northwestern Argentina, where approximately 70% of its area is located, 
as well as southern Bolivia and western Paraguay, encompassing around 150,000 km² (Del Papa 
and Salfity, 1999). Characterized by an extensive sedimentary record with thicknesses reaching 
up to 5,000 meters (Marquillas et al., 2005), this intracontinental rift within the South American 
plate originated during the breakup of Gondwana in the Patagonian orogenic cycle (Keidel, 
1921; Bianucci and Homovc, 1982). Rifting commenced in the Cretaceous and continued until 
the end of the Eocene, when the Andean orogeny started, replacing the extensional regime with 
a contractional one (Hernández and Echavarria, 2009). Although the literature describes the 
Salta Basin as composed of seven sub-basins defined by structural highs (Marquillas et al., 
2005), this study adopts a simplified grouping into four main sectors: Lomas de Olmedo (east), 
Sey (west), Tres Cruces (north), and Metán-Alemanía (south) (Fig. 4.1). 

The discovery of commercial oil in fractured and karstified carbonate reservoirs of the 
Yacoraite Formation within the Lomas de Olmedo Sub-basin in the late 1940s, whose daily 
production reached 50,000 barrels in the 1970s (Disalvo, 2002), spurred further studies in other 
parts of the Salta Basin, especially in the continuous and readily accessible outcrops of the 
Metán–Alemania Sub-basin. Since then, the basin has been the focus of intensive research in 
sedimentology, paleontology, and stratigraphy (e.g., Salfity, 1979; Salfity and Marquillas, 
1981; Marquillas, 1985; Del Papa, 1994; Marquillas et al., 1997, 2003, 2005, 2007; Hernández 
et al., 1999, 2008; Sial et al., 2001; Disalvo et al., 2002). 

From the 2010s onward, high-resolution stratigraphic studies gained prominence in the 
Metán–Alemanía Sub-basin (e.g., Bento Freire, 2012; Gomes, 2013; Pedrinha, 2014; Roemers-
Oliveira, 2014; Pedrinha et al., 2015; Roemers-Oliveira et al., 2015; Bunevich, 2016; Bunevich 
et al., 2017; Deschamps et al., 2020; Gomes et al., 2020; Villafañe et al., 2022; Ceolin et al., 
2022; Oliveira Santos et al., 2023; Fragoso, 2023). Similar studies have recently been conducted 
in the Tres Cruces Sub-basin (e.g., Mutti et al., 2023; Vallati et al., 2023). 

4.2.1. Tectonic evolution 
The geotectonic evolution of the Salta Basin is marked by a series of complex tectonic 

episodes from the Cretaceous through the compressive processes of the Andean Orogeny in the 
Eocene (Hernández and Echavarria, 2009). The sedimentary fill of the basin is traditionally 
divided into two major phases: syn-rift and post-rift (sag). 

The syn-rift phase, which developed during the Cretaceous, was characterized by crustal 
extension that generated depocenters up to 4,000 meters thick (Marquillas et al., 2005). Rift 
phase deposits exhibit a basal unconformity with the underlying basement (Hernández et al., 
1999). The opening of the basin was influenced by inherited Permian and Triassic/Jurassic 
structural lineaments related to the Gondwanan orogenic cycle (Ramos, 1988). Reactivation of 
these faults caused spatial variations in subsidence, leading to the development of internal 
highs, including a prominent central structure known as the Salta–Jujuy Arch, which imparted 
a radial geometry to the basin (Sabino, 2004). 

The post-rift (sag) phase, primarily governed by thermal subsidence (Del Papa and Salfity, 
1999; Salfity and Marquillas, 1999), began in the Maastrichtian. Sediment supply from the 
basin margins progressively buried structural highs, resulting in the unification of sub-basins 
formed during the rifting phase. Consequently, the sedimentary architecture became broader, 
shallower, and more tabular in geometry (Hernández et al., 1999). The Salta–Jujuy Arch 
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remained exposed as a central high until the late Danian, when it was finally covered by post-
rift deposits (Gómez Omil and Boll, 1999, 2005). 

There is no consensus regarding whether the sag phase continued uninterrupted into the 
Eocene. While some authors argue for a single, uninterrupted phase (e.g., Reyes and Salfity, 
1973; Cristallini et al., 1997; Marquillas et al., 2005), others suggest a shift in tectonic regime 
during the Paleocene. These studies propose a second rifting episode known as the Pre-Olmec 
Phase (e.g., Bianucci et al., 1981; Gómez Omil et al., 1989; Gómez Omil and Boll, 1999), 
marked by regional erosional unconformities and drainage rejuvenation, especially along the 
margins of the Lomas de Olmedo Sub-basin. However, this event did not generate substantial 
depocenters, and its deposits were quickly covered by regionally tabular layers, interpreted by 
some as a second sag stage extending into the Eocene. 

The final tectonic phase of the Salta Basin is associated with the Andean Orogeny (Ramos, 
1988), marked by the subduction of the Nazca Plate beneath the South American. This phase, 
developing mainly from the Oligocene onwards, imposed a typical foreland basin regime with 
structural inversions, folding (anticlines and synclines), and fault reactivation. These processes 
generated significant structural traps, which have become regional exploration targets (Gómez 
Omil and Boll, 1999; Hernández and Echavarria, 2009). 

4.2.2. Stratigraphic framework of the Salta Basin 
The study of sedimentary units in the Salta Basin began in 1891 with Brackebusch, who 

initially referred to the Cretaceous succession as the ‘Salta System’. In 1958, Turner revised 
this classification, redefining it as the ‘Salta Group’, encompassing Cretaceous to Paleogene 
strata. Today, the Salta Group is divided into three main subgroups: Pirgua (Reyes and Salfity, 
1973), Balbuena, and Santa Bárbara (both defined by Moreno, 1970). From a sequence 
stratigraphy perspective (Bianucci et al., 1981; Gómez Omil and Boll, 1999; Hernández et al., 
1999), four supersequences are considered: Pirgua, Balbuena, Santa Bárbara, and Lumbrera. 
Their relationship with the lithostratigraphic classification is illustrated in Fig. 4.2. These 
supersequences are described as follows: 1) the Pirgua Supersequence (Barremian–Campanian) 
consists of continental clastic deposits formed in a syn-rift setting, restricted to half-grabens, 
and is subdivided into Pirgua I and Pirgua II; 2) the Balbuena Supersequence (Campanian–
Danian) was deposited during the post-rift sag phase and contains four sequences (I–IV) 
characterized by alternations of clastic sediments, lacustrine carbonates, and local marine 
facies; 3) the Santa Bárbara Supersequence (Danian–Ypresian) is composed of red continental 
clastic deposits whose geometry evolves from wedge-shaped at the base to tabular at the top. It 
comprises three sequences (I–III) that record transitions to lacustrine environments and 
increasingly humid climatic conditions; and 4) the Lumbrera Supersequence (Ypresian–
Priabonian?) includes fluvial and lacustrine deposits divided into two sequences, marking the 
transition from the post-rift stage to a compressional regime associated with foreland basin 
development. The top of the Lumbrera Supersequence marks the transition to compressional 
regimes associated with the onset of foreland basin development  (Hernández et al., 1999). 

4.2.3. The Balbuena Supersequence (Campanian to Danian) 
The Balbuena Supersequence, deposited during the post-rift (sag) phase, is characterized by 

tabular to slightly wedge-shaped geometries and sub-horizontal, laterally continuous bedding 
(Hernández et al., 1999). Its strata exhibit well-developed cyclicity, driven by eustatic and 
climatic fluctuations (Boll and Hernández, 1985; Hernández et al., 1999).  This supersequence 
comprises four sequences, from base to top: Balbuena I through IV (Boll, 1991; Hernández et 
al., 1999, 2008). 
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Fig. 4.2. Stratigraphy of the Salta Basin. A) Chronostratigraphic chart integrating lithostratigraphic and 

sequence stratigraphic classifications. Colored markers indicate the unit analyzed in this study. B) 
Footwall block of a fault exposed in an outcrop near the Cabra Corral reservoir (image adapted from 
Bento Freire, 2012). The stratigraphic nomenclature displays lithostratigraphic terms on the left and 
sequence stratigraphic terms on the right. The red line marks the K/Pg boundary. 

It begins with clastic eolian facies of the Lecho Formation, which leveled the basin floor, 
and is overlain by lacustrine carbonates of the Yacoraite Formation. Evidence of marine 
influence has been reported in the Tres Cruces, Sey, and Lomas del Olmedo sub-basins. The 
base of the unit displays onlap relationships with the underlying Pirgua Supersequence or older 
strata (Hernández et al., 1999), while the top is bounded by a regional unconformity related to 
the ‘Pre-Olmec tectonic phase’ (Bianucci et al., 1981). Notably, the Yacoraite Formation, rich 
in carbonates, functions both as a hydrocarbon reservoir and a source rock (Gómez Omil and 
Boll, 1999; Salfity and Marquillas, 1999), and also hosts uranium mineralization (Salfity and 
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Marquillas, 1999). The lateral distribution of lacustrine facies varies among sub-basins, 
primarily governed by synsedimentary subsidence and sediment supply modulated by orbital 
and climatic forcing. In the Metán–Alemanía Sub-basin, a structural high separating the two 
sub-basins strongly influences the transition between siliciclastic and carbonate facies. Acting 
as a physical barrier, this structure traps coarser siliciclastic sediments in the more proximal 
zones of the basin. Deposits within the Metán–Alemanía Sub-basin can be laterally correlated 
over tens of kilometers (e.g., Bento Freire, 2012; Roemers-Oliveira, 2014; Pedrinha et al., 2015; 
Magalhães et al., 2020;), providing excellent exposures for high-resolution stratigraphic 
studies, as conducted in this work focusing on the Balbuena III Sequence. 

The Balbuena I Sequence represents the lower part of the supersequence and is dominated 
by clastic deposits (Lecho Formation). It comprises fluvial and eolian facies that transition 
progressively into lacustrine carbonate and pelitic intervals at the base of the Yacoraite 
Formation. These deposits exhibit high-frequency cyclicity and moderate correlation potential 
(Boll and Hernández, 1985). 

The Balbuena II Sequence, corresponding to the Amblayo Member of the Yacoraite 
Formation, includes shallow lacustrine carbonates, clastic layers, and paleosols indicative of 
arid periods, followed by a shift to more humid conditions with enhanced sediment input 
(Hernández et al., 1999). Progradational patterns are evident, along with high-energy facies 
such as oolitic grainstones. Its correlation potential, facies architecture, and depositional 
dynamics have been detailed by Pedrinha et al. (2015) and later reinterpreted using a 
cyclostratigraphic approach by Fragoso (2023). 

The Balbuena III Sequence, whose basal part corresponds to the Güemes Member (Reyes, 
1972; Marquillas et al., 2007), differs from the others due to the dominance of pelitic facies, 
interbedded with fine sandstones and lacustrine carbonates (Hernández et al., 1999). Commonly 
referred to as the 'Limoarcillosa' section, this interval has been extensively described, and its 
high-resolution correlation was established by Roemers-Oliveira (2014), providing further 
insight into its depositional character. A detailed sedimentological and stratigraphic analysis 
for this unit is presented in Section 4.4. 

The Balbuena IV Sequence, equivalent to the Alemanía Member of the Yacoraite Formation, 
is the most extensive. It exhibits a tabular to wedge-shaped geometry and records the peak of 
thermal subsidence, with widespread deposition of carbonate and clastic sediments (Hernández 
et al., 1999). High-resolution correlations, facies descriptions, and interpretations of 
depositional processes have been presented by Bento Freire (2012), Bunevich et al. (2017), 
Gomes et al. (2020), and Magalhães et al. (2020). 

Hernández et al. (1999) originally classified these units as third-order sequences, following 
the sequence stratigraphy concept proposed by Vail et al. (1977). Deschamps et al. (2020) 
focusing on the Yacoraite Formation in the Metán–Alemanía Sub-basin, also proposed a 
fourfold subdivision based on third-order trends. Although they do not explicitly refer to the 
Balbuena I–IV Sequences, the defined units closely correspond to them. More recently, Fragoso 
(2023), drawing on the conceptual and terminological standards of sequence stratigraphy sensu 
Catuneanu et al. (2011), reinterpreted the Balbuena Supersequence as a first-order sequence, as 
it records a complete basin-filling cycle under a consistent tectonic regime (sag phase). 
Accordingly, each of the Balbuena Sequences (I to IV) was reclassified as second-order. 
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4.3. Database and methods 

4.3.1. Field data acquisition 
This study incorporates data from 14 outcrops of the Balbuena III Sequence in the Salta 

Basin (Table 4.1). Most of these outcrops are located near the Cabra Corral reservoir, with two 
additional sites situated farther afield: Chuñapampa to the west and Piedras Blancas to the east. 

Table 4.1. Outcrop names, UTM coordinates, and measured thicknesses of the Balbuena III Sequence 
in the Salta Basin. 

1 Chunãpampa 20J 0233454 E / 7204354 N 29.4 m

2 Viñuales 20J 0256764 E / 7201335 N 16.0 m

3 Ponte 20J 0259345 E / 7201873 N 33.2 m 

4 Cedamavi 20J 0259884 E / 7202140 N 32.2 m

5 Finca el Retiro 20J 0260135 E / 7202159 N 31.2 m

6 Vapumas 20J 0260670 E / 7202127 N 32.0 m

7 Assado 20J 0260922 E / 7202232 N 31.6 m

8 Enseada 20J 0261590 E / 7202266 N 32.2 m

9 Lomito 20J 0262343 E / 7201424 N 33.4 m

10 Ravina 20J 0268101 E / 7200325 N 25.1 m

11 Dique Compensador 20J 0269935 E / 7200476 N 34.6 m

12 Piedras Blancas 20J 0279229 E / 7200347 N 32.0 m

13 Astronauta 20J 0258453 E / 7204027 N 30.0 m

14 Tartaruga 20J 0256158 E / 7195458 N 33.0 m

Outcrop
 UTM coordinates
(Datum WGS84)

Measured thickness of the 
Balbuena III Sequence

 
Vertical stratigraphic sections were measured at a 1:40 scale, following the methodology 

outlined by Miall (2000), resulting in 425.9 meters of cumulative logged sections. During 
fieldwork, facies were macroscopically identified and photographed. Additional data collection 
included spectral gamma-ray profiling and sampling for petrographic thin section preparation. 
The identified facies encompass carbonates, siliciclastics, mixed facies, and volcaniclastic 
rocks. 

Carbonate rocks were classified according to Grabau (1904), Dunham (1962), Embry and 
Klovan (1971), and Terra et al. (2010). Siliciclastic rocks were categorized following Picard 
(1971), while volcaniclastic rocks were classified using Schmid (1981). Mixed facies were 
classified based on the methodology of Zuffa (1980). 

Gamma-ray logs, totaling 350 meters of cumulative length across all outcrop sections, were 
acquired using a portable gamma spectrometer, model RS-230BGO Super-Spec® (Radiation 
Solutions Inc.). Measurements were taken at 20 cm intervals, with a 60-second acquisition time, 
as recommended for spectral measurements (K, U, and Th) to improve reliability and reduce 
noise, following the protocol presented by Sêco et al. (2021). The recorded data include total 
gamma-ray emissions (nGv/h), potassium (K %), uranium (U %), and thorium (Th ppm) 
concentrations. These gamma-ray values supported correlations among the different outcrops 
and provided insights into the stratigraphic sequences. 

4.3.2. Petrographic characterization 
Petrographic analysis was conducted on 109 thin sections prepared from field samples and 

examined under a transmitted polarized light microscope. This analysis enabled detailed 
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observation of rock constituents, such as grains, matrix, and cements, as well as the 
identification of textures and microstructures, providing insights into depositional and 
diagenetic environments. Carbonate rocks were described in thin section and classified 
following Dunham (1962), Embry and Klovan (1971), and Terra et al. (2010). Siliciclastic rocks 
were classified according to Picard (1971), mixed facies according to Zuffa (1980), and 
volcaniclastic rocks following Schmid (1981). The proportions of rock constituents in the thin 
sections were visually estimated by comparison with standard reference charts (e.g., Baccelle 
and Bosellini, 1965; Matthew et al., 1991). Thin sections of limestone samples were stained 
with a combined solution of alizarin red-S and potassium ferricyanide, primarily to distinguish 
calcite from dolomite. In this staining method, calcite and its polymorphs acquire a reddish hue, 
while non-ferroan dolomite remains unstained (Dickson, 1965,1966). No ferroan dolomite was 
observed. 

4.3.3. Photogrammetry 
To generate high-resolution Digital Outcrop Model (DOM) for the Assado outcrop, an aerial 

photogrammetric survey was conducted using a DJI Matrice 300 RTK RPAS mounted with a 
DJI Zenmuse P1 full-frame camera with a 35mm lens. The RPAS position was corrected in real 
time using a DJI D-RTK 2 Global Navigation Satellite System base station, ensuring high 
accuracy in data collection with a geopositioning error of just a few centimeters in X, Y, and Z. 
The aerial photographs were captured with the camera oriented at a 90° angle to the target, and 
due to accessibility constraints, the RPAS maintained a minimum distance of 8 meters from the 
outcrop (with an average of 12.9 m), ensuring high-detail image acquisition. A total of 497 
images were collected, resulting in a remarkably high resolution for the model, approximately 
2 mm per texture element. 

Images were acquired with the RPAS hovering at stationary positions, achieving consistent 
image spacing and meeting minimum overlaps of 80% forward and 70% side. However, the 
stationary acquisition process was time-consuming, resulting in significant variations in 
lighting throughout the acquisition campaign. To mitigate lighting variations, a Python-based 
workflow (Python, 2023) performed histogram matching of all images to a reference image, 
followed by histogram equalization. This process minimized shadow effects and lighting 
differences, ensuring consistent illumination across the outcrop. Following this, the images 
were processed using a well-established photogrammetric workflow based on Structure-from-
Motion and Multi-View Stereo (SfM-MVS) techniques (e.g., Lowe, 2004; Westoby et al., 2012; 
Bistacchi et al., 2022), effectively generating digital outcrop models. The processing was 
conducted using Agisoft Metashape (Agisoft Metashape, 2023), producing dense point clouds 
and triangulated meshes, which were textured with the original outcrop images to create a 
photorealistic model. Additionally, the photogrammetry workflow was employed to construct 
the classified 3D point cloud, utilizing masks generated by the CNN method, as described in 
the CNN methodology section (Section 4.3.5). 

4.3.4. LBP analysis  
The Local Binary Pattern (LBP) technique (Ojala et al., 1994; Ojala et al., 1996; Ojala et al., 

2002) is a widely used texture descriptor that encodes local spatial patterns by generating a 
binary code for each pixel based on the differences between its intensity value and those of 
neighboring pixels. This method evaluates the grayscale intensity values within a circular 
neighborhood around a central pixel (𝐼𝐼𝑃𝑃). For each of the eight neighboring pixels (𝐼𝐼𝑛𝑛) n ⋲ 
[1;8], a binary value is assigned based on the comparison with the central pixel as follows: if 
𝐼𝐼𝑛𝑛 ≥ 𝐼𝐼𝑃𝑃, the result is encoded as 1; otherwise, it is 0. These binary values are then weighted by 
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powers of two, aggregated, and summed to generate a unique descriptor for each grid cell, 
𝑐𝑐𝑖𝑖 , 𝑖𝑖 ∈ [1,𝑁𝑁] with 𝑁𝑁 the total number of grid cells, as defined in Eq. (1): 

 
𝑃𝑃 =  𝐿𝐿𝐿𝐿𝐿𝐿 (𝑐𝑐𝑖𝑖) =  �𝑠𝑠 (𝐼𝐼𝑛𝑛 − 𝐼𝐼𝑃𝑃) ⋅ 2𝑛𝑛

7

𝑛𝑛=0

 (1) 

The function 𝑠𝑠(𝑥𝑥), which determines the binary output, is defined in Eq. (2): 

 𝑠𝑠(𝑥𝑥) =  �1,   𝑖𝑖𝑖𝑖 𝑥𝑥 ≥ 0
0,   𝑖𝑖𝑖𝑖 𝑥𝑥 < 0 (2) 

In this work, the LBP method was applied to process outcrop data and support the 
interpretation of high-frequency stratigraphic cyclicity. The objective was to compare the LBP-
derived textural patterns with stratigraphic stacking trends interpreted as regressive and 
transgressive hemicycles at high resolution. This analysis was implemented as a plugin within 
the open-source software CloudCompare (CloudCompare, 2024), using point cloud data as the 
primary input (sensu Viseur et al., 2022). As illustrated in Fig. 4.3, a grid is first generated over 
the outcrop surface. The grid resolution is user-defined, allowing flexibility to adjust the 
resolution according to the desired scale of analysis. To obtain a single gray level per grid cell, 
the gray values of the points contained within each grid cell were averaged. Then, the classical 
LBP algorithm is applied. Finally, the computed LBP values are averaged across horizontal 
bands of the grid to generate a profile of mean values (Fig. 4.3). 

 
Fig. 4.3. Workflow illustrating the application of LBP analysis to outcrop data, focusing on texture 

characterization based on grayscale values. 

4.3.5. Lithofacies-classified 3D point cloud 
This methodology, previously applied by Guadagnin et al. (2025), integrates CNN-based 

segmentation of outcrop images with a photogrammetry workflow to build a classified 3D point 
cloud for rock facies analysis (Fig. 4.4). This combined approach enables precise facies 
classification and spatial reconstruction. 

CNN is a supervised deep-learning technique that requires expert-labeled data for training. 
In this study, 49 outcrop images were labeled by an interpreter to distinguish rock facies, 
excluding irrelevant features such as vegetation and sky, which were grouped into an ‘others’ 
category. This subset represents approximately 10% of the full dataset, composed of 497 
images, and was used to train the CNN model. 
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The lithofacies segmentation was performed using a U-Net convolutional neural network 
(Ronneberger et al., 2015) implemented in Python (Python, 2023) using the TensorFlow 
(TensorFlow, 2024) deep learning library. The model consists of an encoder-decoder structure 
with skip connections, four convolutional blocks in the encoder, and a symmetrical decoder that 
progressively restores spatial resolution through upsampling. Each convolutional layer uses 
ReLU activation, HeNormal initialization, and a 3 × 3 kernel, with the number of filters 
doubling at each depth level. A dropout rate between 0.1 and 0.3 was applied to reduce 
overfitting, and optional residual connections were tested. The final output is obtained through 
a 1 × 1 convolution followed by a softmax activation. Training was performed with the Adam 
optimizer (learning rate of 1 × 10⁻⁴), using a validation split of 10% to monitor performance. 
The model was trained with a batch size of 10 for 100 epochs. 

 
Fig. 4.4. Workflow illustrating the generation of a lithofacies-classified 3D dense point cloud, using 

facies-labeled images processed with a CNN model. 

The labeled images were used to train the CNN model by minimizing the differences 
between the model predictions and the true labels in the dataset. The training process employed 
a pixel-wise cross-entropy loss function, commonly used in segmentation tasks, to optimize 
model performance. After achieving an accuracy above 80%, the CNN model was retrained 
with all available labeled images to further enhance its performance and then applied to segment 
all remaining non-labeled images in the dataset. Pre-processing steps included downscaling the 
image resolution from 8,192 × 5,460 pixels to 384 × 256 pixels, following the approach of 
Guadagnin et al. (2025), and applying data augmentation techniques (Shorten and 
Khoshgoftaar, 2019) to improve the model’s robustness. Entropy maps, which quantify the 
uncertainty in lithofacies predictions based on pixel-wise probability distributions, were used 
for qualitative assessment of model confidence. This approach highlights areas of high or low 
uncertainty in the classification results, as also described by Guadagnin et al. (2025). 

In the photogrammetry phase, the 3D point cloud construction followed a standard 
workflow. After creating a sparse point cloud, segmentation results from the CNN model were 
imported as masks into separate data ‘chunks’ within the software, each chunk representing a 
distinct lithofacies. This segmented approach enabled classification during the dense cloud 
generation process, ensuring facies-specific point clouds. Unlike the 2D masks, the 3D 
classified model provides a continuous spatial representation of facies across the outcrop, 
supporting more integrated geological interpretation. After manual refinement to remove 
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misclassified points, points corresponding to each lithofacies were assigned specific colors in 
CloudCompare (CloudCompare, 2024) to facilitate visualization of the high-resolution 
classified 3D models. 

4.4. Sedimentological and stratigraphic framework of the Balbuena III 
Sequence 

This section will present an overview of the main characteristics of the sedimentary-
stratigraphic framework, highlighting the key elements that supported the implementation of 
the digital approaches used in this study. 

4.4.1. General characteristics 
The thickness of the SBIII varies between 30 and 35 meters, and this entire interval is 

typically exposed within each of the studied outcrops. The strata are tilted at an average angle 
of 30° to 40° relative to their original horizontal deposition (Fig. 4.5), a feature commonly 
observed in the Subandean fold and thrust belt of Northwest Argentina due to Andean tectonics 
(Hernández and Echavarria, 2009). 

 
Fig. 4.5. Assado DOM showing the Balbuena III Sequence and its key stratigraphic markers, presented 

in stratigraphic order: A) basal red siltstone unit; B) cerebroid columnar stromatolite layer; C) 
volcanic tuff layer. Figure layout inspired by Roemers-Oliveira et al. (2015), now applied to the new 
digital outcrop model. 

In the central part of the studied area, where the main outcrops are concentrated, the SBIII 
is relatively easy to identify in the field due to the presence of key stratigraphic markers. Its 
basal portion is characterized by a red siltstone unit up to 3 meters thick (Fig. 4.5A). Just above 
this layer lies the Paleogene–Cretaceous boundary, identified by Marquillas et al. (2007) based 
on  carbon and oxygen isotope anomalies. Approximately two-thirds up from the base, a 
cerebroid columnar stromatolite layer (Fig. 4.5B) provides another distinct marker. Above the 
SBIII, within the overlying Balbuena IV Sequence, a 15-20 cm thick volcanic tuff layer (Fig. 
4.5C) occurs just above a limestone bed isolated between two pelitic layers. 

The base of SBIII is composed of fine-grained quartz arenites interbedded with pelites 
(shales and siltstones). Toward the top, carbonate facies such as calcarenites, laminites, and 
stromatolites become more prominent, intercalated with pelites and carbonate mudstones, as 
illustrated in the columnar section (Fig. 4.6). These compositional variations reflect a shift in 
the hydrological regime controlling sedimentation across the sequence. At the basal portion, 
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the interpreted lacustrine deposition operated under a hydrologically open system, allowing 
substantial external sediment influx into the basin. In contrast, the upper portion of the sequence 
records a transition to a hydrologically closed lake system, characterized by reduced external 
sediment supply, increased evaporation, and conditions favorable for carbonate production. 

 
Fig. 4.6. Vertical stratigraphic section of the Balbuena III Sequence at the Vapumas outcrop, near the 

Cabra Corral reservoir, showing lithofacies, sedimentary structures, and components (adapted from 
Roemers-Oliveira et al., 2015). The Cretaceous (K)/Paleogene (Pg) boundary is marked by a red line 
at the base of the section. Curved arrows highlight cyclicity. Grain size classification follows 
Wentworth (1922); for visualization purposes, laminite and stromatolite facies are standardized as 
silt and pebble, respectively. 
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4.4.2. Lithofacies Associations 
The facies of SBIII are grouped into four distinct facies associations (FA), each reflecting 

genetic relationships and depositional environments. These associations capture the variability 
in hydrological regimes and sediment supply, driven primarily by climatic conditions, 
transitioning between open and closed lacustrine systems. The alternation between open and 
closed lake conditions represents a shift in hydrologic and sedimentary dynamics, providing 
insights into past climatic fluctuations and basin evolution. Below, each FA is described, 
highlighting its characteristic facies, sedimentary structures, and depositional processes. 
Further details about the facies are summarized in Table 4.2, while Fig. 4.7 and Fig. 4.8 present 
a compilation of representative macro- and microphotographs illustrating some of the facies 
identified within the Balbuena III Sequence. Additionally, Fig. 4.9 shows the schematic 
distribution of facies along a depositional profile for the open- and closed-lake intervals (Fig. 
4.9A and Fig. 4.9B, respectively). The mnemonics used are S for siliciclastic facies, C for 
carbonate, M for mixed, and V for volcanic. 

Open lake conditions during a humid phase were characterized by significant siliciclastic 
input, driven by river inflows, and were conducive to the deposition of coarse-grained littoral 
facies and fine-grained pelagic facies. In contrast, closed lake conditions during an arid phase 
were marked by limited siliciclastic input, increased evaporation, and enhanced carbonate 
production, reflecting a transition to hydrologically restricted settings. 

4.4.2.1. FA1 – Littoral Open Lake Association (LOLA): Siliciclastic-
dominated facies representing marginal and shallow environments 
in open lacustrine systems 

The LOLA encompasses deposits formed in shallow, coastal zones of an open lacustrine 
system, which may be wave-dominated. This association is primarily characterized by 
siliciclastic facies, such as siltstones with incipient lamination (S1 – Fig. Fig. 4.7A–B) and 
heterolites composed of shale and fine-grained sandstones exhibiting hummocky cross-
stratification (S4 – Fig. 4.7D, F) or low-angle cross-stratification (S5 – Fig. 4.7G). Desiccation 
cracks are frequently observed (Fig. 4.7I). Additionally, some layers include carbonate-rich 
facies, such as rudstones (C7 – Fig. 4.7E) or floatstones (C8) dominated by gastropod shells. 
Occasionally, siliciclastic sandstones incorporate carbonate components, including bioclasts, 
peloids, and ooids, forming hybrid sandstones (M2). 

This association reflects a high-energy depositional environment influenced by fluvial and 
shoreline processes, with significant siliciclastic sediment input. Periodic stabilization of 
substrates, evidenced by gastropods and bioturbation, suggests alternating high- and low-
energy conditions. Wave reworking, current activity, and combined flow regimes, along with 
episodes of subaerial exposure, as indicated by desiccation cracks, are consistent with a 
hydrologically open lake system. Siliciclastic sedimentation predominates, but carbonate 
production occurred during calmer and/or chemically stressed intervals, which are frequently 
associated with gastropod mortality accumulations. The presence of S1 at the base of the section 
marks a mudflat plain indicative of maximum lake retraction and low accommodation 
conditions. 
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Table 4.2. Description and interpretation of lithofacies from the Balbuena III Sequence, Salta Basin, highlighting sedimentological characteristics and depositional 
environments. 

Brief description  Interpretation 

S1 Siltstone with micaceous clay and incipient planar-parallel 
lamination

Deposition in muddy plains in a supralittoral subenvironment

S2 Heterolithic facies with shale and very fine sandstone showing wavy 
lamination

Mud decantation (predominant) and sand deposition by oscillatory flows in 
littoral to sublittoral subenvironment

S3 Claystone with planar-parallel lamination Decantation in profundal subenvironment

S4 Heterolithic facies composed of very fine sandstone with hummocky 
cross-stratification and shale

Mud decantation and sand deposition (predominant) by oscillatory flows in 
littoral to sublittoral subenvironment

S5 Very fine sandstone with low-angle cross-stratification Sand deposition in a high-energy littoral subenvironment

C1 Laminated mudstone Micrite deposition in low-energy profundal subenvironment

C2 Massive mudstone Micrite deposition in low-energy profundal subenvironment

C3 Oolitic packstone with low-angle to wavy cross-stratification Deposition near oolitic sand banks in littoral to sublittoral subenvironment

C4 Ostracodal packstone Deposition in a moderate-energy littoral subenvironment influenced by 
waves

C5 Peloidal wavy packstone Deposition in moderate-energy littoral subenvironment influenced by 
waves

C6 Massive oolitic wavy grainstone Deposition in oolitic sand banks in high-energy littoral subenvironment

C7 Peloidal grainstone with cross-stratification Deposition in high-energy oolitic banks within a littoral subenvironment 
influenced by oscillatory or combined flows

C8 Gastropod bioclastic rudstone Deposition in a moderate-energy supralittoral subenvironment

C9 Gastropod bioclastic floatstone Deposition in a moderate/low-energy supralittoral subenvironment

C10 Columnar domal cerebroid stromatolite Cyanobacteria bioinduction in the photic zone of a littoral subenvironment

C11 Crenulated laminite Cyanobacteria bioinduction of a supralittoral subenvironment

M1 Marl with planar-parallel lamination Decantation in profundal subenvironment

M2 Hybrid arenite Deposition of hybrid sands in a moderate to high-energy littoral 
subenvironment with variable siliciclastic influx

Volcanic V1 Volcanic vitreous tuff Sedimentation of material from volcanic eruptions

Lithofacies

Siliciclastic

Carbonate

Mixed
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4.4.2.2. FA2 – Profundal Open Lake Association (POLA): Mixed 
siliciclastic-carbonate facies representing deep environments in 
open lacustrine systems 

The POLA encompasses facies deposited in the deeper, low-energy zones of an open 
lacustrine system. Fine-grained siliciclastic deposits predominate, including siltstones with 
lenses of fine sandstone (S2 – Fig. 4.7C) and claystone (S3 – Fig. 4.7H), accompanied by minor 
marl facies exhibiting alternating thin carbonate and siliciclastic laminae (M1). 

This association reflects sedimentation primarily by suspension fallout in distal, low-energy 
areas of the lake under an open hydrological regime. The lack of wave or current influence and 
the dominance of mud-rich, silty sediments point to deposition in the pelagic zone. Sedimentary 
processes were driven by hypopycnal plumes from fluvial inputs, with suspended sediment 
settling to the lake floor. The finer grain sizes and the absence of high-energy sedimentary 
structures indicate calm depositional conditions in these profundal settings. 

4.4.2.3. FA3 – Littoral Closed Lake Association (LCLA): Carbonate-
dominated facies representing marginal and shallow environments 
in closed lacustrine systems 

The LCLA is characterized by carbonate-dominated facies deposited in shallow waters of a 
hydrologically closed lake system. These facies include low-angle to wavy cross-stratified 
oolitic packstones (C3), bioclastic packstones to ostracode (C4 – Fig. 4.8E), peloidal wavy 
packstones (C5), massive oolitic grainstones (C6 – Fig. 4.8A–B, D), cross-stratified peloidal 
grainstones (C7 – Fig. 4.8G), cerebroid columnar stromatolites (C10 – Fig. 4.8H, J–M), and 
crenulated laminites (C11 – Fig. 4.8C, F). Occasional mixed facies (M2) are also interbedded 
within this association. Desiccation cracks (Fig. 4.8M) are frequently observed beneath 
stromatolite and laminite layers. 

This facies association reflects a hydrologically closed lacustrine environment, where 
reduced sediment input and elevated evaporation rates favored carbonate sedimentation. The 
dominance of micritic mud, ooid and skeletal grains, along with features such as stromatolites 
and microbial mats (crenulated laminites), indicates depositional processes dominated by 
chemical and biological activity. Wave and current activity contributed to the formation of 
granular facies such as grainstones and packstones, highlighting moderate to high-energy 
conditions in shallow lake margins. Fluctuating water levels led to subaerial exposure, denoted 
by the desiccation cracks. 

4.4.2.4. FA4 – Profundal Closed Lake Association (PCLA): Carbonate 
and siliciclastic mudstones representing deep environments in 
closed lacustrine systems 

The PCLA is characterized by low-energy deposits in the deeper, pelagic zones of a 
hydrologically closed lacustrine system. The facies are dominated by laminated (C1) and 
massive carbonate mudstones (C2 – Fig. 4.8I), with minor occurrences of plane-parallel 
laminated claystones (S3) and marls (M1). 

This association reflects sedimentation under calm, restricted conditions in the profundal 
regions of a closed lake system. The predominance of fine-grained carbonate mudstones and 
the minimal siliciclastic input indicate limited external sediment supply. Sedimentation 
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primarily occurred through suspension fallout, with carbonate precipitation influenced by 
microbial activity. During slightly more humid periods, hyperpycnal plumes could have 
sporadically delivered siliciclastic material to these deeper lake zones. 

 
Fig. 4.7. Representative lithofacies from the open lake interval of the Balbuena III Sequence in the 

Metán-Alemanía Sub-basin. The name at the end of each description corresponds to the respective 
outcrop: A) Red siltstone (S1), Finca el Retiro; B) Charophyte gyrogonites within facies S1, parallel-
polarized light, Enseada; C) Clastic dykes in facies S2 (siltstones with lenses of fine sandstone), 
Assado; D) Hummocky cross-stratified sandstone surrounded by siliciclastic mudstone (S4), 
Vapumas; E) Photomicrograph of gastropod bioclastic rudstone (C7), parallel-polarized light, thin 
section stained with alizarin, Vapumas; F) Photomicrograph of facies S4, parallel-polarized light, 
Enseada; G) Low-angle cross-stratified sandstone (S5), Cedamavi; H) Photomicrograph of 
siliciclastic mudstone with plane-parallel lamination (S3), cross-polarized light, Vapumas; I) 
Desiccation cracks (outlined by dashed lines) on top of the S4 facies, Vapumas. 
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Fig. 4.8. Representative lithofacies from the closed lake interval of the Balbuena III Sequence in the 

Metán-Alemanía Sub-basin. The name at the end of each description corresponds to the respective 
outcrop: A) Massive grainstone (C6) with wavy bedforms, Vapumas; B) Photomicrograph of oolitic 
grainstone, parallel-polarized light, Enseada; C) Crenulated laminate (C11), Finca el Retiro; D) 
Photomicrograph of massive oolitic grainstone, parallel-polarized light, Vapumas; E) 
Photomicrograph of bioclastic packstone to ostracode, parallel-polarized light, Ponte; F) 
Photomicrograph of crenulated laminite, parallel-polarized light, thin section stained with alizarin, 
Vapumas; G) Photomicrograph of peloidal grainstone (C7), cross-polarized light, Enseada; H) 
Domical stromatolite (C10), Lomito; I) Photomicrograph of massive carbonate mudstone (C2), 
parallel-polarized light, thin section stained with alizarin, Lomito; J) Detail of the cerebroid texture 
of stromatolite (C10), Assado; K) Photomicrograph of columnar domical stromatolite, parallel-
polarized light, Tartaruga; L) Detail of fascicular crystal occurrence within columnar domical 
stromatolite, parallel-polarized light, Enseada; M) Desiccation cracks observed on top of the 
cerebroid stromatolite facies, Astronauta. 
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Fig. 4.9. Schematic distribution of lithofacies along depositional profiles for the lower Open Lake (A) 

and upper Closed Lake (B) intervals. Lithofacies mnemonics correspond to those listed in Table 4.2. 

4.4.3. High-resolution Sequence Stratigraphy 
The SBIII displays well-defined depositional patterns that reflect climate-driven 

hydrological and sedimentological dynamics. These patterns are expressed through a hierarchy 
of stratigraphic sequences corresponding to different frequencies of base-level changes. At least 
three scales of depositional sequences are identified within the SBIII: low, medium, and high-
frequency sequences. 

Low-frequency sequences encompass the entirety of the SBIII and have traditionally been 
interpreted as third-order cycles (Hernández et al., 1999), although more recent studies suggest 
a second-order interpretation as an alternative (Fragoso, 2023; Fragoso et al., 2024). These 
sequences reflect long-term climatic oscillations, transitioning between open lake systems 
during humid phases, dominated by siliciclastic facies, and closed lake systems during arid 
phases, characterized by carbonate-dominated facies (Roemers-Oliveira, 2014). 

Medium-frequency sequences correspond to stratigraphic intervals that exhibit consistent 
thickening and thinning trends of high-frequency sequences. These sequences are delineated by 
key stratigraphic surfaces: the Maximum Retraction Surface (MRS), marking maximum lake 
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contraction, and the Maximum Expansion Surface (MES), representing maximum lake flooding 
(e.g., Fragoso et al., 2023; Roemers-Oliveira et al., 2024). The MES is associated with 
retrogradational stacking patterns, while the MRS marks a transition to progradational stacking. 
These medium-frequency sequences are highly correlatable and provide a framework for 
regional stratigraphic correlation. 

High-frequency sequences (elementary sequences) are the primary units in this study. These 
sequences are characterized by vertical stacking patterns of facies associations, reflecting base-
level fluctuations. High-frequency sequences are traceable across distances of tens of 
kilometers, as demonstrated in the stratigraphic correlation section. 

4.4.3.1. Elementary Sequences in SBIII 
Within SBIII, two main types of elementary sequences (Fig. 4.10) are identified: siliciclastic-

dominated and carbonate-dominated sequences. Each sequence represents a complete cycle of 
transgressive-regressive (T–R) deposition, reflecting short-term and multiple-event base-level 
variations. These sequences are characterized by distinct facies associations and stacking 
patterns, with thicknesses ranging from 1 to 2 meters. In both sequence types, the MES 
corresponds to maximum lake expansion, while the MRS marks maximum lake contraction. 

4.4.3.1.1. Siliciclastic-dominated sequences 
These sequences (Fig. 4.10A) are typical of the lower interval of the SBIII, where profundal 

pelagic facies (POLA) are overlain by littoral facies (LOLA). The sequences exhibit upward-
shallowing trends, with fine-grained siliciclastic facies at the base transitioning to coarser-
grained sandstones and hybrid facies toward the top. Desiccation cracks, though not deeply 
penetrating, are common in the uppermost layers. These patterns reflect a lake expansion phase 
followed by contraction, possibly driven by multiple-event shifts from humid to arid climatic 
conditions. 

4.4.3.1.2. Carbonate-dominated sequences 
These sequences (Fig. 4.10B) dominate the upper SBIII and comprise pelagic facies (PCLA) 

overlain by littoral carbonate facies (LCLA). They also exhibit upward-shallowing trends but 
are characterized by carbonate facies indicative of high carbonate productivity during lake 
contraction phases. In arid conditions, bioinduced facies, such as stromatolites and laminites, 
become prominent. Desiccation cracks are often observed at the top of these sequences, 
marking subaerial exposure during multiple-event lake contraction. 

4.4.3.2. Medium-Frequency Sequences 
Medium-frequency sequences correspond to the stacking of high-frequency sequences and 

are conceptually aligned with the small-scale sequences defined by Strasser et al. (1999) and 
Strasser (2018). These sequences are characterized by thickening or thinning upward trends in 
the hemicycles of high-frequency sequences (Fig. 4.10C). 

For the SBIII, considering the MRS as the sequence boundary, four medium-frequency 
sequences, with thicknesses between 6 and 9 meters, were interpreted. These sequences provide 
a critical framework for understanding the interplay of sediment supply and accommodation 
space in the context of medium-term base-level changes. A hierarchical organization is 
recognized: the lower two medium-frequency sequences, corresponding to the open-lake 
interval, contain three and four siliciclastic-dominated elementary sequences, respectively, 
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while the upper two sequences, within the closed-lake interval, each contain four carbonate-
dominated elementary sequences. 

4.4.4. Stratigraphic Correlation 
A defining feature of the Balbuena Supersequence is the correlatability of its depositional 

sequences across multiple frequency scales—low, medium, and high—since they represent the 
SAG deposits of the basin. All high-frequency sequences within the SBIII were successfully 
correlated across the studied outcrops, covering distances of up to 45 km. Although no detailed 
structural data exist for the study area, a regional estimate indicates ~36% shortening in the 
Subandean fold-and-thrust belt at this latitude (Hernández and Echavarria, 2009). This suggests 
that, before deformation, the lateral extent of these sequences may have reached ~70 km, further 
emphasizing their stratigraphic continuity. 

This extensive lateral continuity, together with the recurrence of stacking pattern signatures, 
vertical trends in their arrangement, the internal Transgressive-Regressive (T-R) structure, and 
the mappability of sequences and their stratigraphic surfaces, collectively underscores the 
allocyclic nature of these depositional sequences, as proposed by Bento Freire (2012), Pedrinha 
(2014), and Roemers-Oliveira (2014), and highlighted by Magalhães et al. (2020). 

To illustrate these correlations, an east-west stratigraphic cross-section was constructed (Fig. 
4.11), using the K/Pg boundary as a datum. This chronostratigraphic marker, at 66 Ma, is 
located immediately above the red siltstones of facies S1. This facies, deposited in the 
shallowest (supralittoral) environment of the open lake interval, represents the stage of 
maximum lake retraction. The low-frequency MRS, which marks the onset of a transgressive 
trend in SBIII, lies immediately above this unit. The upper boundary of the low-frequency 
sequence is also marked by an MRS, coinciding with an abrupt facies change in which 
siliciclastic pelagic facies overlie carbonate rocks from the closed lake interval of the SBIII. 

The stratigraphic correlation highlights the consistent recurrence of elementary sequences, 
with 15 identified across the study area: seven siliciclastic-dominated and eight carbonate-
dominated, grouped into four small-scale sequences. Medium-frequency MRS surfaces are 
represented by red lines in the cross-section (Fig. 4.11), while high-frequency MRS surfaces 
are depicted in other colors. Correlations were based on facies associations, with elementary 
sequences consistently showing littoral facies overlying pelagic ones, characterizing 
transgressive–regressive (T–R) cycles. Gamma ray profiles provided additional support for 
correlations, particularly in carbonate intervals with subtle facies contrasts. 

This high-resolution stratigraphic framework reinforces the utility of the SBIII as a model 
for understanding depositional processes in lacustrine basins. The integration of stratigraphic 
surfaces and facies stacking patterns reveals the underlying controls of sedimentation and 
accommodation space within the Metán-Alemanía Sub-basin, offering a valuable analog for 
similar lacustrine systems in the geological record. 
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Fig. 4.10. Stratigraphic model illustrating climate-controlled transgressive-regressive cycles in carbonate lacustrine settings, with idealized elementary and medium-

frequency sequences of SBIII. A) Siliciclastic-dominated sequence. B) Carbonate-dominated sequence. C) Medium-frequency sequence based on stacking trend 
analysis of elementary sequences. For scale, the hammer is 28 cm long and the pencil tip is 5 mm wide. For the facies legend, refer to the main text or Table 4.2. 
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Fig. 4.11. East–west stratigraphic cross-section of SBIII in the Metán-Alemanía Sub-basin, showing medium- and high-frequency sequence correlations using the K/Pg 

boundary as a datum. Facies are color-coded by lithofacies associations, highlighting a transition from open- to closed-lake conditions from base to top. Stratigraphic 
profiles were mirrored to align with gamma-ray data, thereby facilitating section correlation.
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4.5. LBP and stratigraphic cyclicity 
The LBP analysis was performed from a stratigraphic perspective, aiming to evaluate its 

correspondence with the stacking trends identified within the SBIII. As the Assado outcrop 
exhibits tilted strata due to Andean tectonic deformation (Fig. 4.5), a flattening procedure was 
applied to align the layers horizontally, minimizing grid distortions (Fig. 4.12C). Two 
representative sections were selected for testing: section 1, corresponding to the basal open-
lake interval dominated by siliciclastic facies (Fig. 4.12A), and section 2, representing the upper 
closed-lake interval characterized by carbonate-dominated facies (Fig. 4.12B). 

For each section, LBP analyses used grids with square cells of 5, 10, 20, and 30 cm per side. 
These tests aimed to assess how grid resolution influences the detection of textural patterns and 
their correspondence with stratigraphic cyclicity, with the aim of identifying the scale that best 
captures high-frequency cyclicity. Finer grids enhanced sensitivity to subtle variations by better 
capturing local grayscale contrasts, whereas coarser grids averaged these differences, reducing 
the preserved textural detail. 

In section 1 (Fig. 4.12A), which corresponds to the open-lake interval dominated by 
siliciclastic lithofacies, the LBP analysis applied with different grid resolutions reveals 
significant variation in the detection of high-frequency stratigraphic cyclicity. At finer 
resolution (5 cm per side), the LBP profile captures a high density of local textural variations. 
However, this level of detail tends to reflect the internal heterogeneity of individual 
hemicycles—highlighting interbedded facies within regressive intervals—rather than broader 
cyclic patterns. In contrast, the 10 cm per side grid provides a more regular LBP profile, closely 
aligned with the interpreted stacking trends. The transitions between lighter and darker trend 
LBP values correspond to the alternation between transgressive and regressive hemicycles, 
reflecting systematic differences in local contrast patterns at this scale. Grid resolutions of 20 
and 30 cm per side result in progressively smoothed profiles, with a noticeable loss of 
stratigraphic resolution and a reduction in the number of cycles identified, particularly in thinner 
sequences. These observations suggest that finer grids enhance lithofacies contrast, whereas 
intermediate resolutions, such as 10 cm per side, better capture the signal associated with 
elementary stratigraphic sequences, typically expressed at 1–2 meters in thickness. 

Section 2 (Fig. 4.12B), representing the closed-lake interval with predominantly carbonate 
lithofacies, exhibits more subtle textural contrasts between transgressive and regressive 
hemicycles. Despite this, the LBP method remains effective at identifying cyclicity, especially 
when using intermediate resolution grids. At 5 cm per side, the profile becomes irregular and 
overly sensitive to centimeter-scale variations, often reflecting internal lamination or small-
scale heterogeneity within facies such as stromatolites and laminites. The 10 cm per side grid 
resolution appears to provide the most suitable match for this scale of high-frequency 
sequences, with LBP peaks aligning more closely with the interpreted cycles, including portions 
of the succession where transgressive hemicycles are partially preserved or visually less 
distinguishable. Grid resolutions of 20 and 30 cm per side significantly reduce the number of 
observable cycles, with broader, less distinct variations in the LBP profile that fail to correspond 
to the stratigraphic framework. As in section 1, the 10 cm per side resolution represents a good 
compromise between textural sensitivity and stratigraphic significance, allowing for the 
recognition of stacking patterns associated with short-term lake-level fluctuations. 
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Fig. 4.12. High- and medium-frequency sequences of SBIII in the Assado DOM correlated with LBP 

analysis. A) Open-lake interval. B) Closed-lake interval. C) Entire Balbuena III Sequence. The white 
line marks the K/Pg boundary as identified on the DOM. 
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Across both sections, the LBP profiles exhibit a general trend that reflects the stratigraphic 
stacking patterns interpreted in the field. In most transgressive hemicycles, the profile tends to 
show a progressive increase in LBP values upward, while regressive hemicycles are typically 
marked by a decrease. This pattern is particularly clear in section 1 (open-lake interval), where 
fine-grained and homogeneous transgressive deposits are overlain by more heterolithic 
regressive facies, resulting in regular and alternating LBP profiles that align closely with 
interpreted cycles. In section 2 (closed-lake interval), the same trend is observed, although it is 
less distinct. This reduced clarity is attributed to the more limited development of facies 
associated with transgressive hemicycles, leading to lower textural contrast between cycles. 

In both intervals, the LBP profiles at 10 cm per side resolution exhibit notable overall 
correspondence with the interpreted stratigraphic boundaries. However, a few minor deviations 
are observed, where isolated peaks do not fully align with the previously defined cycle limits. 
These deviations may reflect internal facies heterogeneity within hemicycles, particularly in 
intervals with interbedded lithotypes, or may indicate areas where the stratigraphic 
interpretation could be further refined. Nonetheless, the general agreement between LBP-
derived patterns and field-based interpretations highlights the potential of this method for 
detecting high-frequency stratigraphic sequences. 

Based on the results obtained in sections 1 and 2, the 10 cm per side grid resolution was 
selected for application across the entire Assado outcrop. This resolution provided the best 
balance between capturing local textural variation and preserving the signal associated with 
elementary stratigraphic sequences. The resulting LBP DOM (Fig. 4.13) reveals a well-
organized pattern of alternating light and dark horizontal bands that correspond to the overall 
stacking architecture of SBIII. The basal portion of the outcrop (SSW), which encompasses the 
open-lake interval, shows distinct banding with regular alternations, consistent with the high-
frequency cycles interpreted in section 1. The upper portion (NNE), representing the closed-
lake interval, exhibits a somewhat more irregular pattern, reflecting the lower contrast between 
facies observed in section 2. Several laterally continuous bright bands in the LBP image 
correspond to major peaks previously identified in the section-based LBP profiles, illustrating 
the sensitivity of the method to pronounced textural transitions at outcrop scale. 

Fig. 4.13 also presents a correlation between high-frequency Maximum Retraction Surfaces 
(MRS) and the LBP results mapped across the entire Assado outcrop. Continuous lines indicate 
surfaces with clearer correspondence to well-defined dark bands—zones of lower LBP 
values—whereas dashed lines represent less evident or more laterally discontinuous features. 
The focus on MRS stems from the observation that the end of regressive hemicycles tends to 
yield lower LBP values, which appear as darker bands in the LBP-rendered DOM. This makes 
them more easily identifiable and traceable across the outcrop using grid-based analysis. 
Although preliminary and based on visual inspection, this correlation highlights the potential 
of LBP-based mapping to support the identification and lateral continuity of high-frequency 
stratigraphic surfaces when integrated with architectural and facies-based interpretations. This 
approach remains exploratory, and further studies are needed to quantitatively validate the 
method for use in stratigraphic frameworks. It is important to note, however, that the correlation 
of these surfaces must also consider outcrop geometry and potential lithological contrasts 
unrelated to stratigraphic stacking, since textural variation may also result from lateral facies 
changes or, when present, from structural deformation. The latter can be mitigated through 
preprocessing. 
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Fig. 4.13. LBP results mapped across the Assado outcrop using a 10 cm per side grid resolution. Red lines indicate correlated high-frequency Maximum Retraction 

Surfaces (MRS), identified based on stacking patterns and dark LBP bands. Continuous lines represent well-correlated surfaces, whereas dashed lines indicate surfaces 
with less well-defined correlations.
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4.6. CNN and lithofacies-classified 3D point cloud 

4.6.1. Labeled images 
The first step required to implement the workflow of the CNN and lithofacies-classified 3D 

point cloud is the labeling of lithofacies in the photographs acquired in the field using an RPAS. 
This is the most time-consuming stage and requires an expert with thorough knowledge of the 
stratigraphy and sedimentology of the study area to accurately label the facies. Achieving good 
results with the fewest possible labeled images used for training is the key objective. Initially, 
5% of the dataset from the Assado outcrop (25 out of 497 images) was labeled, yielding an 
accuracy below 60%. This proportion was later increased to 10% (49 images), improving 
accuracy to over 80%. 

In practice, the labeling of lithofacies in the SBIII is not a straightforward process; it is 
inherently interpretative. This complexity arises because lithofacies often cannot be easily 
distinguished due to their similar colors or their intercalation with other facies. The reduced 
resolution (384 × 256 pixels) used during CNN model training decreases processing time but 
inevitably causes a loss of fine detail. The objective of the classification, however, is not to 
detect all centimeter-scale variations, but to recognize facies at the scale of the hemicycles of 
the elementary sequences, which are also relevant to the reservoir scale. Consequently, some 
lithofacies were grouped into broader classes (Fig. 4.14). Heterolithic facies, for example, 
composed of intercalations up to 10 cm thick, may not be discernible at the reduced resolution 
and were therefore treated as a single type. 

 
Fig. 4.14. Summary of labels used in the CNN-based classification, including lithofacies and non-

geological classes. 

For instance, the 'sandstone' facies represents heterolithic deposits composed of siliciclastic 
mudstones and fine-grained sandstones, exhibiting hummocky or low-angle cross-stratification. 
Similarly, granular carbonate facies such as grainstone and packstone could not be 
distinguished from field-acquired photographs and were all assigned to the general class of 
'grainstone.' Although this approach simplifies the classification, it ensures that the CNN model 
is trained with consistent and interpretable data, which is critical for predictive performance. 
Of the 11 lithofacies used, only two markedly thin layers (~15 cm thick) were retained as 
individual classes due to their specific stratigraphic importance in the study area: crystalline 
limestone, which marks the K–Pg boundary, and volcanic tuff, which is datable and may be 
relevant in geochronological studies. Fig. 4.15 presents examples of labeled photographs. 
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Fig. 4.15. Comparison of raw and labeled images. The left image shows the original, non-interpreted 

photo, while the right image presents the same photo with lithofacies labels used in the CNN 
approach, as defined in Fig. 4.14. 

4.6.2. CNN model 
The labeled images were divided into two groups: the first was used to train the CNN model, 

and the second was reserved for evaluating model accuracy. For the Assado outcrop, 497 photos 
were used to generate the virtual outcrop model. Of these, 49 images (10%) were labeled, with 
50% allocated for training and 50% for model validation. Image selection was random, but it 
was monitored to ensure that all lithofacies and the entire stratigraphic sequence were 
represented in both the training and validation subsets. After training, a global accuracy of 84% 
was obtained. Table 4.3 presents the precision, recall, and F1 score parameters obtained for the 
CNN model applied to the Assado outcrop. Precision measures the proportion, for each 
category, of correct predictions compared to all predicted. Recall evaluates the ability to detect 
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all actual positives, and F1 Score is the harmonic mean between Precision and Recall ratios, 
providing an overall balanced measure of model performance. Fig. 4.16 illustrates some 
examples of validation results, showing the correspondence between predicted classes and the 
labeled images considered as true for the validation metrics. 

Table 4.3. Performance metrics (Precision, Recall, and F1 Score) for the CNN model applied to the 
Assado outcrop, showing the global accuracy and results by individual classes. 

Lithofacies Precision  Recall F1 Score
1 GST 0.79 0.83 0.81

2 STR 0.55 0.51 0.53

3 LMT 0.84 0.80 0.82

4 MUD 0.83 0.87 0.85

5 SND 0.72 0.81 0.76

6 HET 0.96 0.79 0.86

7 RUD 0.80 0.63 0.71

8 CLC 0.76 0.32 0.45

9 SHL 0.90 0.93 0.91

10 SLT 0.96 0.83 0.89

11 TUF 0.66 0.43 0.52

12 Others 0.84 0.82 0.83

Global accuracy 84%
 

The model achieved global accuracy of 84%, but this figure alone does not provide a 
complete assessment of performance for each class, particularly in cases of imbalanced datasets. 
In such scenarios, metrics such as Precision, Recall, and F1 Score provide a more detailed 
perspective. Some classes achieved the highest scores among the dataset, such as HET (96% 
Precision, 79% Recall, 86% F1 Score) and SLT (96%, 83%, 89%), demonstrating the model's 
ability to consistently identify these lithofacies. The SHL class also yielded similarly high 
values, with 90%, 93%, and 91% for Precision, Recall, and F1 Score, respectively. Furthermore, 
the MUD class exhibited a balanced performance across metrics, with 83% Precision, 87% 
Recall, and 85% F1 Score. 

Other classes showed moderate performance, such as GST (79%, 83%, 81%), LMT (84%, 
80%, 82%), and SND (72%, 81%, 76%), indicating that the model performed adequately but 
with potential for improvement. The moderate performance observed for the SND lithofacies 
can be attributed to the confusion the model had between SND and GST lithofacies within the 
same layer, as indicated by the white arrows in Fig. 4.16C. The 'Others' class also displayed 
consistent results, with 84% Precision, 82% Recall, and 83% F1 Score, as it represents all non-
rock features in the photographs, such as roads, sky, and vegetation. 

On the other hand, some classes exhibited lower performance, such as STR (55%, 51%, 
53%), CLC (76%, 32%, 45%), and TUF (66%, 43%, 52%). These results are mainly associated 
with the limitation imposed by the downscaling of the original images. Using the actual 
downscaled resolution (384 × 256) and the acquisition geometry (DJI P1 with 35 mm lens at 
~12.9 m camera-to-target distance), the effective pixel size in the reduced images is about 3.4 
cm/pixel. For thin layers such as CLC and TUF, whose thickness is represented by only a few 
pixels at this resolution, accurate segmentation becomes intrinsically difficult.  For the CLC 
class (yellow arrow in Fig. 4.16D), the high Precision (76%) suggests that when the model 
predicts this lithofacies, it is generally correct, but the very low Recall (32%) indicates that 
many true instances are missed. This behavior may be because CLC corresponds to a single 
layer within the stratigraphic sequence. The TUF class (red arrow in Fig. 4.16A) exhibits both 
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low Precision (66%) and low Recall (43%), reflecting the same scale-driven constraint. The 
STR class (55% Precision, 51% Recall, 53% F1-score) presents a more balanced performance 
compared to CLC and TUF but still falls within the low-performance category. Although STR 
is more abundant, it typically occurs interbedded with the LMT facies, often sharing similar 
color patterns, and the reduced resolution also hindered the model’s ability to distinguish the 
textural details separating STR from LMT. Another noteworthy observation is that the CNN 
model often merges the two thinner stromatolite (STR) layers present within the middle portion 
of SBIII into a single layer (as indicated by the blue arrow in Fig. 4.16B), a behavior consistent 
with the resolution limitation. 

 
Fig. 4.16. Examples of validation results comparing predicted classes and labeled images used as ground 

truth. Arrows highlight key features: red (A) – tuff layer; blue (B) – stromatolite beds predicted as a 
single one by the model; white (C) – areas of confusion between sandstone and grainstone; yellow 
(D) – thin crystalline carbonate layer. 

4.6.3. Lithofacies-classified 3D point cloud 
As an output of the Python (2023) CNN code, in addition to lithofacies predictions on the 

images, masks are generated for each lithofacies (Fig. 4.17A). This protocol enables the masks 
to be imported into Metashape (Agisoft Metashape, 2023) and used to generate lithofacies-
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based 3D point clouds. This approach is particularly advantageous not only because it allows 
for the generation of lithofacies-based 3D point clouds but also because it ensures that only the 
most robust predictions, identified in more than one photograph, are considered. Through the 
photogrammetry workflow combining Structure-from-Motion and Multi-View Stereo (SfM-
MVS), matching points between multiple photographs are required (Fig. 4.17B). This process 
inherently filters out isolated predictions that may have been incorrectly interpreted by the CNN 
model in individual images and ensures consistency by integrating only the facies predictions 
that appear in multiple images. 

 
Fig. 4.17. Illustration of the process for generating lithofacies masks, a key step in constructing 

lithofacies-based 3D point clouds. A) Example of mask generation for multiple lithofacies from a 
single photograph using CNN; white areas correspond to regions included in the photogrammetry 
workflow. B) Overlapping photographs showing only the mask for a single lithofacies (STR). These 
masks are combined across images to identify consistent predictions, which are then used to construct 
the lithofacies-based 3D point cloud. Final classified point clouds are presented in Fig. 4.18. 
Lithofacies labels follow Fig. 4.14. 

In the Metashape software (Agisoft Metashape, 2023), all the original-resolution images 
(8192 × 5660 pixels) used to generate the DOM are utilized to create a sparse point cloud of 
the outcrop. Subsequently, this cloud is duplicated across multiple chunks, each representing a 
specific lithofacies. For each chunk, the masks corresponding to that lithofacies, generated in 
.jpg format for all images, are imported. This enables the generation of a dense point cloud for 
each chunk, resulting in lithofacies-based dense point clouds that are qualitatively evaluated to 
allow manual removal of mismatched points. Consequently, the final 3D point cloud reveals 
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the spatial distribution of specific lithofacies as distinct geological bodies (Fig. 4.18 and Fig. 
4.19). These bodies represent the preserved architectural elements within the outcrop studied. 

 
Fig. 4.18. 3D point cloud classified by facies (B–L) from the Assado DOM (A) of the Balbuena III 

Sequence, located in the Metán-Alemanía Sub-basin within the Cabra Corral reservoir region. The 
gray point cloud represents the dense point cloud of the studied outcrop. Lithofacies labels are 
detailed in Fig. 4.14.
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Fig. 4.19. Lithofacies-classified 3D point cloud of the Assado outcrop. Complementary to Fig. 4.18, this figure shows the fully classified 3D point cloud, integrating all 

lithofacies into a single visualization. The gray points represent the dense point cloud of the studied outcrop. Labels follow the classification in Fig. 4.14. 
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4.7. Discussion 

4.7.1. Integrating digital and traditional methods for analog outcrop 
analysis in the Salta Basin 

The integration of digital techniques with traditional field-based methods, as implemented 
in this study, represents a key aspect demonstrating the significant advantages of this hybrid 
approach. While conventional techniques—such as field data acquisition and laboratory 
analyses—have proven highly effective for generating knowledge and defining the depositional 
and stratigraphic models of the study area, digital approaches have enabled the extraction of 
stratigraphic and sedimentological information in an automated or semi-automated manner. 
This has facilitated the processing of large datasets and led to considerable time savings. 
Moreover, digital outcrop models obtained via RPAS allow data extraction in areas with 
restricted access, thereby expanding their potential for analysis and application. 

High-resolution digital outcrop models played a crucial role in the analysis conducted here, 
enabling the production of photorealistic models that, in addition to serving as the basis for all 
subsequent digital analyses, preserve geological information with high fidelity. For example, 
the DOM of the Assado outcrop (Fig. 4.18A) exhibits a textural resolution of approximately 
1.6 mm, and the point cloud density is about 208,000 pts/m². This high resolution permits the 
identification of different lithofacies by visual inspection, including the recognition of 
millimetric laminations in facies such as stromatolites and laminites. This level of detail allows 
for a qualitative evaluation of the dense, lithofacies-classified point clouds generated by the 
integrated CNN and photogrammetry workflow. However, although these models are 
extremely data-intensive and require high-performance computing for processing, it is possible 
to reduce the resolution when necessary to facilitate information extraction. It should be noted, 
however, that the reverse is not possible: if the models are initially acquired at low resolution, 
even artificial enhancement techniques cannot compensate for the loss of detail, precluding the 
generation of high-resolution models faithful to reality. 

Field observations and petrographic thin section analysis supported the grouping of 
lithofacies (Fig. 4.14) used in the application of CNN techniques to outcrop photographs. This 
synergy improved both the accuracy of the classifications and the geological relevance of the 
digital outputs. Similarly, the results obtained from LBP analysis were qualitatively consistent 
with the stacking patterns described in the field and with the high-frequency stratigraphic 
framework observed in the study area, although further quantitative validation would be 
advisable to confirm this agreement. 

Nevertheless, the accuracy of digital analyses is heavily dependent on the quality and 
resolution of the input data, as well as the prior geological knowledge required for result 
evaluation. For instance, during the training of the CNN model, the resolution of the labeled 
images was significantly reduced to decrease training time, which resulted in the loss of some 
details. The CLC and TUF lithofacies, corresponding to thin layers, performed less 
satisfactorily compared to other lithofacies (see Table 4.3). Entropy maps (Fig. 4.16) 
demonstrate that the highest uncertainties—represented by reddish tones—are concentrated in 
the thinner layers and at the contacts between different facies, since, at reduced scale, a single 
pixel may contain information from more than one lithological type, thereby hindering 
prediction. However, the relevance of these limitations depends on the purpose of the 
interpretative analysis. For example, in the context of the present study area, if the objective is 
to evaluate reservoir quality characteristics, the model’s difficulty in predicting a 10-cm-thick 
layer of volcanic tuff may not pose a significant problem. This lithofacies is characterized by 
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fine particles, extremely low permeability, and occurs within a shale unit with similar 
petrophysical characteristics. In other geological contexts, even thin or discontinuous layers 
could significantly influence reservoir performance; for instance, a tuff layer within a 
permeable geological body could act as a barrier to fluid flow. Additionally, in stratigraphic 
studies where volcanic tuffs are targeted as potential datable horizons, their accurate recognition 
becomes essential to support reliable geochronological frameworks. 

Furthermore, as illustrated by the white arrows in Fig. 4.16C, the CNN model frequently 
confuses the SND and GST lithofacies, placing them in the same layer. Although both facies 
are granular in nature, they differ in composition, with SND being siliciclastic and GST 
carbonate. This outcome was anticipated given the gradational transition between 
predominantly siliciclastic and carbonate facies, where hybrid sandstones occur. Since this 
transitional facies was not explicitly defined as a separate class during training—because 
distinguishing it by the naked eye is challenging and requires petrographic microscopy—such 
confusion in the predictions is to be expected. Therefore, it is incumbent upon the interpreter to 
verify whether the SND or GST facies should be preserved for a given interval, with the 
possibility of manually excluding or modifying classifications that do not align with the 
expected geological interpretation. Another aspect requiring improvement in the CNN model 
is the prediction of rock fragments, particularly within muddy facies that tend to fragment and 
remain on the outcrop. To prevent the model from misclassifying these fragments as part of the 
‘others’ class when a photo contains many fragments, they are currently interpreted as part of 
the lithofacies from which they originated. However, when the facies-classified point cloud is 
generated, an artifact is introduced that does not accurately represent the true geometry of the 
geological body, as indicated by the yellow arrows in Fig. 4.18G. Although not implemented 
in this work, it is recommended that a new class be introduced to represent rock fragments, 
enabling them to be classified and isolated more directly, thereby reducing the need for 
extensive manual editing. 

Transforming the DOM into an LBP-rendered surface provides a computationally 
lightweight and efficient way to highlight textural variation using grayscale values alone, but 
its effectiveness can be affected by variations in lighting, surface geometry, and facies contrast. 
Unlike RGB imagery, which requires processing across three color channels, LBP encodes 
local differences using a single grayscale channel, making it especially suitable for large-scale 
applications where data volume and processing time are limiting factors. The application of the 
LBP method to digital outcrop models demonstrated its potential as a complementary tool for 
stratigraphic interpretation, particularly in identifying high-frequency cyclicity. By encoding 
local grayscale variations, LBP values reflected systematic trends along stacking patterns, 
allowing correlation with transgressive–regressive hemicycles described in the field. Lower 
LBP values at the ends of regressive hemicycles—represented by darker bands in the LBP-
rendered DOM—could be associated with the identification of Maximum Retraction Surfaces 
(MRS). Although the 10 cm per side grid resolution proved to be the most suitable for this 
study, the optimal cell size may vary depending on the objectives, the characteristics of the 
outcrop, and the thickness of the elementary stratigraphic sequences under investigation. 
Therefore, determining the appropriate resolution requires testing and calibration based on the 
scale of stratigraphic features of interest. Despite the promising results, the method remains 
sensitive to variations in facies architecture and outcrop geometry, and its effectiveness depends 
on the depositional context. Future applications that integrate LBP with surface roughness 
analysis may offer additional insights not only for refining the interpretation of stratigraphic 
cyclicity, but also for supporting the recognition of facies based on their combined textural and 
morphological characteristics. 
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An additional observation from the multi-resolution analysis was the recurrence of certain 
LBP peaks across all tested grid sizes. These persistent responses are primarily associated with 
strong textural contrasts within the outcrop and are more evident in coarser grids, where 
stacking patterns tend to be oversmoothed. Rather than capturing the organization of elementary 
sequences, these signals reflect broader variations in texture, which may correspond to specific 
facies with distinct depositional or diagenetic signatures. In some cases, such peaks could 
represent features of interest for petrophysical evaluation or act as mappable horizons within 
the DOM. While not necessarily tied to stratigraphic boundaries, their consistency across scales 
suggests that LBP can assist in highlighting textural anomalies that merit further geological 
investigation. 

The integration of CNN-based lithofacies classification and LBP analysis provided valuable 
support for the stratigraphic and lithofacies interpretations of analog outcrops in this study. 
CNN allowed for the automated generation of classified point clouds from large image datasets. 
LBP offered a simple and efficient way to detect systematic textural variations across the 
outcrop. Although promising, digital methods should not replace field and laboratory analyses. 
Their role is to complement traditional approaches and increase the efficiency and consistency 
of geological interpretations. 

4.7.2. The Salta Basin as an analog for Pre-Salt reservoirs 
The Pre-Salt reservoirs consist of rock formations located beneath a thick salt layer, 

extending for more than 800 km along the Brazilian offshore margin, from Espírito Santo to 
Santa Catarina states. These reservoirs are buried between 3,000 and 4,000 meters below the 
seafloor and are in water depths ranging from 1,500 to 3,000 meters. The Pre-Salt reservoirs 
exhibit challenging characteristics, including layered stratigraphic architectures, shrubstone-
rich carbonate successions, and significant heterogeneity driven by diagenetic processes and 
structural compartmentalization (Bueno de Moraes et al., 2024). 

One of the main challenges in Pre-Salt reservoir characterization is the limited availability 
of core data, which hampers the detailed interpretation of facies distributions and stratigraphic 
heterogeneities. Even 19 years after the first commercial Pre-Salt well was drilled, core 
availability remains limited compared to the vast extent of these reservoirs, as coring operations 
are highly costly. In this context, the Salta Basin in Argentina is a suitable analog due to its 
similar geotectonic evolution and stratigraphic architecture, a rift-to-sag basin with lacustrine 
carbonates (Bento Freire et al., 2011; Terra et al., 2012). 

A key factor supporting the use of Salta as an analog is the presence of carbonate deposition 
associated with high-frequency base-level fluctuations, enabling the correlation of stratigraphic 
sequences, including high-frequency ones, across tens of kilometers. This depositional model 
and its correlatable potential align with those presented in Fragoso et al. (2023) and Pedrinha 
and Artagão (2024), who quantified multiple sequence hierarchies, found that medium-
frequency sequences with thicknesses ranging from ~5 to a few tens of meters are the most 
relevant for reservoir modeling, as they can be correlated over ~15–20 km and match the scale 
of production data. Although both studies describe higher-frequency sequences, the scarcity 
and heterogeneity of core data in producing fields limit the correlation of metric-scale units. 
The contrast between the well-documented Tupi Field (Santos Basin), with over 100 wells and 
extensive core coverage enabling a finer characterization, and the Brava Reservoir (Campos 
Basin), where only one of the three wells contained 42 m of core, highlights the impact of data 
availability on reservoir interpretation. This scarcity underscores the value of well-exposed 
outcrop analogs such as those in the Salta Basin, where detailed facies analysis supports the 
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definition and correlation of key stratigraphic surfaces, improving the robustness of production-
scale interpretations. 

As discussed in Section 4.7.3, HRSS further supports delineation of stratigraphic surfaces 
and the recognition of transgressive-regressive cycles that control compartmentalization and 
fluid pathways. Establishing a detailed stratigraphic framework is crucial for delineating 
production zones and optimizing reservoir development strategies in Pre-Salt reservoirs 
(Guerrero et al., 2024). The Salta Basin, with its well-preserved depositional record and 
correlatable high-frequency sequences (Bento Freire, 2012; Pedrinha, 2014; Roemers-Oliveira, 
2014; Fragoso et al., 2024; this work), provides a practical framework to quantify sedimentary 
body geometry and spatial distribution, supporting improved reservoir characterization and 
predictive simulations. 

4.7.3. The use of outcrop analogs for reservoir modeling 
Outcrop analogs provide both conceptual frameworks validated by real-world observations 

and quantitative data that support parameterization in numerical models, including sedimentary 
body dimensions, facies stacking patterns, and geostatistical parameters (Howell et al., 2014). 
These elements are especially critical in carbonate reservoirs, where depositional complexity 
and diagenetic modifications strongly influence reservoir quality (Grammer et al., 2004; Lucia, 
2007; Ahr, 2008). 

Within this scope, HRSS offers a structured approach to mapping stratigraphic units below 
seismic resolution, often linked to allogenic controls such as base-level variations (Silveira, 
2020; Magalhães et al., 2020; Fragoso et al., 2021a, 2021b; Fragoso et al., 2022). Criteria for 
identifying these sequences include: (I) a transgressive-regressive (T-R) stacking pattern, (II) 
vertical recurrence of these patterns, (III) trend analysis to define lower-frequency sequences, 
and (IV) mappability of stacking patterns and their bounding stratigraphic surfaces (Silveira, 
2020; Magalhães et al., 2020; Fragoso et al., 2021a, 2021b). Such criteria are relevant in a 
variety of environments, influencing both heterogeneity and depositional architecture. 

HRSS allows stratigraphic zonation, improving correlation potential and supporting 
predictions of high-permeability zones, sealing intervals, and heterogeneity distribution at the 
metric scale (Grammer et al., 2004; Magalhães et al., 2020; Fragoso et al., 2021a). 

The quantitative characterization of carbonate geobodies is also essential for reservoir 
modeling approaches, whether in stochastic geostatistical simulation, object-based modeling 
(e.g., Adams et al., 2005), or process-based forward modeling. In carbonates, body geometry, 
internal heterogeneity, and diagenetic overprints can generate complex relationships between 
sequence stratigraphy and reservoir architecture, where depositional and diagenetic processes 
do not conform to timelines (Borgomano et al., 2001; Fournier and Borgomano, 2007). 
Outcrop-based observations help define fluid pathways, structural planes, and heterogeneity 
patterns, thereby reducing uncertainties in hydrocarbon exploration and development. 

In recent years, process-based modeling has gained relevance as a predictive tool, enabling 
the testing of depositional scenarios and their impact on reservoir heterogeneity and 
connectivity (Granjeon, 1996). For carbonate-related deposits, forward modeling can reproduce 
spatial facies distribution and stacking patterns, increasing the predictive capacity of reservoir 
models (e.g., Warrlich et al., 2008; Hawie et al., 2015, 2017; Liechoscki de Paula Faria et al., 
2017; Borgomano et al., 2020a, 2020b). Comparing such simulations to real-world exposures 
allows parameter refinement and improves the accuracy and reliability of depositional models. 

 



160 
 

4.8. Conclusions 
This study applied an integrated approach combining High-Resolution Sequence 

Stratigraphy (HRSS) and digital techniques, including Local Binary Pattern (LBP) analysis and 
Convolutional Neural Networks (CNNs), to outcrop data from the Balbuena III Sequence 
(SBIII) in the Salta Basin. The objective was to explore methods capable of extracting and 
interpreting geological parameters from Digital Outcrop Models (DOMs) in a way that supports 
reservoir analog studies. 

Results indicate that the transition from an open-lake to a closed-lake hydrological system 
exerted a major influence on sedimentary architecture and lithotype distribution in SBIII. Facies 
stacking patterns reveal climate-driven base-level fluctuations controlling sedimentation, 
preservation, and stratigraphic heterogeneity. The application of HRSS enabled the 
identification of elementary, medium, and low-frequency sequences, demonstrating that 
lacustrine deposits can present a high degree of stratigraphic organization and correlation 
potential across extensive distances. This metric scale is often the most difficult to resolve using 
subsurface datasets; in such cases, outcrop observations provide essential constraints. 

The LBP method represents a first, still preliminary and exploratory approach. Qualitative 
assessment of the results revealed patterns that align with stratigraphic interpretations, 
suggesting potential for highlighting cyclicity and stratigraphic surfaces. Further studies should 
explore different processing configurations and develop quantitative validation metrics to 
strengthen its applicability within stratigraphic frameworks. 

The CNN models met the intended objective of identifying facies at the scale of hemicycles 
within elementary sequences, which is directly relevant to stratigraphic framework construction 
and reservoir-scale interpretation. Among the 11 facies considered, the finer ones such as 
crystalline limestone and volcanic tuff (thickness < 20 cm) showed lower classification 
performance, mainly due to the downscaling adopted in this study. Future tests should evaluate 
other downscaling configurations, considering the specific goals of each application. 

From an applied perspective, the integration of HRSS, LBP, and CNN-based classification 
offers a complementary framework to traditional geological methods, contributing to the 
efficiency of outcrop interpretation and generating quantitative inputs for reservoir modeling. 
Although each component has limitations, the workflow demonstrates how digital techniques 
can reduce the manual workload associated with DOM analysis while providing reproducible, 
structured outputs. Continued refinement and validation will expand their applicability, 
contributing to the advancement of digital approaches in geosciences and to more robust 
reservoir analog studies.  
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This chapter is based on an article in preparation for submission to Geodata and AI. 

From Pixels to Point Clouds: Evaluating CNN Strategies for 3D Lithofacies 
Classification in Digital Outcrop Models 

Eduardo Roemers-Oliveira1,2*, Jérémy Marchini1, Sophie Viseur1, Ítalo Gomes Gonçalves3, 
Felipe Guadagnin3, François Fournier1, Ana Clara Freccia3, Guilherme de Godoy Rangel3, 

Guilherme Pederneiras Raja Gabaglia2 
1Aix Marseille Université, CNRS, IRD, INRAE, CEREGE, Aix-en-Provence, France 
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Abstract 
Convolutional neural networks (CNNs) have increasingly been applied in geosciences for 

automated lithofacies classification. However, defining optimal methodological configurations 
that balance classification accuracy and operational efficiency, especially for 3D lithofacies 
modeling from outcrop imagery, remains underexplored. This study systematically evaluates 
supervised CNN strategies for lithofacies classification using high-resolution images from two 
outcrops of the Balbuena III Sequence in the Salta Basin, Argentina. Eleven lithofacies classes 
were manually labeled on 2D photographs based on expert interpretation, and the CNN was 
trained on this labeled dataset. Parameters such as image resolution, training duration, labeling 
proportions, geological interpretation strategies, and data augmentation were tested. Results 
demonstrate that a configuration combining double-resolution images, 100 training epochs, 
labeled data covering approximately half of the outcrop area, and the use of both raw and 
histogram-equalized images achieves robust classification performance while reducing manual 
annotation effort. The optimized CNN workflow successfully generated geologically coherent 
3D lithofacies-classified point clouds, validated by cross-outcrop tests. Beyond methodological 
insights, the study highlights key geological observations, including the lateral continuity of 
major lithofacies, the importance of lithological contrast in detecting thin layers, and the 
influence of facies geometry on classification accuracy. While findings are specific to the 
Balbuena III Sequence, this work can, however, be considered a guideline for applying such an 
approach to similar sedimentological and stratigraphic contexts. This work advances the 
integration of deep learning techniques within geosciences, providing a practical contribution 
toward developing automated tools that complement traditional field-based stratigraphic and 
sedimentological analysis. 

Keywords: Deep learning in geosciences; Facies classification; RPAS imagery; Facies 
mapping; Lithofacies 3D point cloud; Salta Basin. 

5.1. Introduction 
Convolutional neural networks (CNNs), first introduced as “convolutional networks” by 

LeCun et al. (1989), are a class of deep learning algorithms inspired by the hierarchical 
organization of the visual cortex as described by Hubel and Wiesel (1968). Practical 
applications of CNNs in image classification began in the 1990s, including their successful use 
for handwritten digit recognition, notably with the MNIST dataset (LeCun et al., 1998). A 
decade later, the breakthrough performance of the AlexNet architecture in the 2012 ImageNet 
Large Scale Visual Recognition Challenge (ILSVRC) marked a turning point, demonstrating 
that deep CNNs could outperform traditional machine learning techniques in complex visual 
tasks (Krizhevsky et al., 2012). This capability is fundamentally linked to the hierarchical 
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structure of deep learning architectures, where complex features are progressively built from 
simpler patterns across multiple hidden layers (Goodfellow et al., 2016; Karpatne et al., 2019). 

Since then, CNNs have become a core component of image-based classification and 
segmentation workflows across multiple scientific domains, and geosciences have been no 
exception. Their applications have expanded rapidly, encompassing seismic interpretation (e.g., 
Souza et al., 2020), rock sample imaging (e.g., Fan et al., 2020; Falivene et al., 2022), and thin-
section imagery (e.g., Cheng and Guo, 2017; Koeshidayatullah et al., 2020), enabling the 
automation of tasks traditionally reliant on manual expert interpretation. In sedimentology and 
stratigraphy, CNNs have shown promise in outcrop analysis, supporting the recognition of 
facies in photographic surveys (e.g., Malik et al., 2022) and 3D surface models (e.g., Sato et 
al., 2025). 

However, lithofacies classification poses distinct challenges compared to conventional 
computer vision tasks. Unlike standard image datasets, the interpretation of geological imagery 
often requires specialized domain knowledge, as the visual similarity between classes can be 
substantial. As a result, labeling datasets for CNN training typically demands both 
sedimentological and stratigraphic expertise, supported by field and laboratory data. This 
grounding is essential to ensure that facies assignments are not only visually coherent, but also 
geologically meaningful, factors that significantly influence model performance and 
reproducibility. 

In addition, the impact of methodological choices, such as image resolution, input 
preprocessing (e.g., histogram equalization), training duration, and facies labeling strategies, 
on classification accuracy and generalization remains underexplored. These factors are 
especially critical when CNN outputs are integrated into Digital Outcrop Models (DOMs) for 
sedimentological and stratigraphic analysis, where classification reliability directly affects 
spatial interpretation in three dimensions. This raises the central research question: Which CNN 
methodological configurations optimize the trade-off between classification accuracy and 
operational efficiency in 3D lithofacies modeling from outcrop imagery? 

This study addresses these gaps by systematically evaluating supervised CNN strategies for 
lithofacies classification based on high-resolution imagery acquired using Remotely Piloted 
Aircraft Systems (RPAS) from two outcrops of the Balbuena III Sequence in the Salta Basin, 
Argentina (Fig. 5.1). An eleven-class lithofacies scheme was used to label the images, and 
several training configurations were tested, including different image inputs and data 
augmentation approaches. Performance was assessed using standard classification metrics, and 
the best-performing models were used to construct lithofacies-classified 3D DOMs from 
photogrammetric point clouds. Additionally, a cross-outcrop generalization test was conducted, 
applying a CNN trained on one outcrop to a distinct exposure. This approach enables a robust 
validation of parameter choices and contributes to advancing reproducible and transferable 
workflows for stratigraphic interpretation using CNNs. 

The methodological pipeline applied in this study builds upon the CNN-to-point cloud 
workflow originally proposed by Guadagnin et al. (2025) and adapted for the Salta Basin by 
Roemers-Oliveira et al. (2025). By systematically evaluating alternative methodological 
configurations, this work aims to optimize classification performance and efficiency, 
establishing a guideline for 3D lithofacies classification in DOMs using CNNs. 
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Fig. 5.1. Location of the Salta Basin in northwest Argentina, South America. A) Isopach map showing 

thickness variations of the Yacoraite Formation (values in hundreds of meters). The map also 
highlights the main sub-basins, delineated by structural highs and arcs. B) Simplified stratigraphic 
column of the Balbuena Supersequence, showing the four internal sequences (Balbuena I to IV), with 
emphasis on the Balbuena III Sequence, the focus of this study, and its correlation with formations. 
Modified from Marquillas et al. (2011) and Villafañe et al. (2022). 

5.2. Geological context 

5.2.1. Salta Basin overview 
The stratigraphy of the Salta Basin has been interpreted through two main approaches: 

lithostratigraphy, which emphasizes lithological facies and unit boundaries (Turner, 1958; 
Marquillas et al., 2005), and sequence stratigraphy, which focuses on depositional sequences 
and their temporal relationships (Bianucci et al., 1981; Gómez Omil and Boll, 1999; Hernández 
et al., 1999, 2008). This study adopts the sequence stratigraphy framework, focusing on the 
Balbuena Supersequence, particularly the Balbuena III Sequence, which corresponds to the 
Yacoraite Formation of the Salta Group. This approach allows a detailed temporal and 
depositional characterization of the studied unit. 

The Salta Basin (Fig. 5.1A), located in northwest Argentina, experienced alternating 
extensional and compressional tectonic phases. The initial extensional phase, linked to the 
breakup of Gondwana and the opening of the South Atlantic Ocean during the Early Cretaceous 
(Keidel, 1921; Ramos, 1988), led to syn-rift sedimentation starting in the Barremian stage 
(Marquillas et al., 2005). Subsequent compressional phases are associated with the Andean 
orogeny (Hernández and Echavarria, 2009). 

The basin can be subdivided into four sub-basins: Lomas de Olmedo (east), Sey (west), Tres 
Cruces (north), and Metán-Alemania (south). The sedimentary fill is mainly divided into syn-
rift (Pirgua Supersequence) and post-rift (Balbuena Supersequence) phases, the latter further 
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subdivided into four depositional sequences (Balbuena I to IV) spanning from Maastrichtian to 
Danian (Hernández et al., 1999), as illustrated in Fig. 5.1B. 

5.2.2. Balbuena III Sequence 
This study concentrates on the Balbuena III Sequence within the Metán-Alemania sub-basin, 

which records the transition from the Maastrichtian to Danian stages (Marquillas et al., 2003). 
The sequence is composed of lacustrine carbonate, siliciclastic, and mixed facies deposited 
under primary climatic control, which regulates the lake base level and drives the development 
of a cyclic pattern formed by repetitive elementary sequences (Roemers-Oliveira et al., 2025). 
The cyclic pattern consists of elementary sequences, each representing depositional cycles 
controlled by fluctuations in lake level driven by climatic variations. 

The Balbuena III Sequence exhibits an evolution from an open lake system at its base to a 
closed lake system towards the top, which controls the main rock types present in each interval. 
Based on this evolution, four facies associations can be distinguished (Roemers-Oliveira et al., 
2025): 

• Littoral Open Lake Association (LOLA): siliciclastic-dominated sandstones and 
siltstones deposited in shallow, wave-influenced settings. 
 
• Profundal Open Lake Association (POLA): fine-grained siliciclastic and mixed 
facies deposited in deeper, low-energy environments. 
 
• Littoral Closed Lake Association (LCLA): carbonate-rich grainstones, packstones, 
and stromatolites in shallow, evaporitic settings. 
 
• Profundal Closed Lake Association (PCLA): laminated carbonate mudstones and 
marls in deep, restricted lacustrine environments. 

 

Stratigraphic cyclicity is observed at multiple scales, with sequences representing 
transgressive-regressive cycles marked by Maximum Retraction Surfaces (MRS) and 
Maximum Expansion Surfaces (MES). These cycles are traceable across numerous outcrops 
and can be correlated laterally over distances of tens of kilometers, reflecting climatic and 
hydrological variations controlling sedimentation (Roemers-Oliveira et al., 2025). 

The present study focuses on two well-exposed outcrops of the Balbuena III Sequence: 
Assado and Vapumas, located on the shore of Cabra Corral Lake. These outcrops exhibit well-
preserved lithofacies associations representative of the lacustrine depositional environments 
described above. A detailed stratigraphic correlation between these outcrops, based on the 
elementary transgressive-regressive (T-R) sequences and sedimentological characteristics, is 
presented in Fig. 5.2, illustrating the depositional patterns within the sequence. 
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Fig. 5.2. Stratigraphic correlation between the Vapumas and Assado outcrops of the Balbuena III 

Sequence (Metán-Alemania sub-basin, Salta Basin, Argentina). The correlation is based on 
elementary transgressive-regressive (T-R) sequences and sedimentological characteristics. 
Granulometric sedimentary logs were mirrored to align with gamma-ray logs. Modified from 
Roemers-Oliveira et al. (2025). Map data from Google Earth. 

5.3. Materials and methods 

5.3.1. Workflow overview 
The proposed workflow for lithofacies classification and 3D point cloud generation is based 

on the integration of supervised convolutional neural networks (CNN) and photogrammetric 
modeling, as presented in Fig. 5.3. The pipeline begins with high-resolution image acquisition 
using RPAS, followed by expert-based manual labeling of lithofacies. These labeled images 
are used to train a CNN model, which predicts facies classes on photographs downscaled in 
spatial resolution for computational efficiency. Model performance is quantitatively assessed 
through standard classification metrics (described in Section 5.3.2), allowing for the 
comparison of different training strategies and the selection of the most effective configuration 
— which constitutes the core objective of this study. For each predicted image, binary masks 
are then generated per lithofacies and applied to the equalized photos at their original spatial 
resolution. Photogrammetric reconstruction is performed with point matching restricted to the 
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masked regions, resulting in lithofacies-classified 3D point clouds. The main steps of this 
workflow are detailed in the following subsections. 

 
Fig. 5.3. Overview of the methodological workflow, from RPAS imagery acquisition to 3D point cloud 

generation through masked photogrammetric reconstruction. The masks are produced by a CNN 
model trained using expert-labeled data. Modified from Roemers-Oliveira et al. (2025). 
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5.3.1.1. Data acquisition and available datasets 
This study utilizes high-resolution image datasets from two closely spaced outcrops of the 

Balbuena III Sequence, Assado and Vapumas, located within the Metán-Alemania sub-basin 
along the shore of Cabra Corral Lake (see Fig. 5.2). Both outcrops have a similar stratigraphic 
thickness of approximately 32 meters. 

Image acquisition was conducted using a DJI Matrice 300 RTK RPAS equipped with a DJI 
Zenmuse P1 full-frame camera (35 mm lens, 8192 × 5460-pixel resolution). Geolocation 
accuracy was ensured by real-time correction from a DJI D-RTK 2 GNSS base station, 
providing positioning within a few centimeters. During the survey, a minimum distance of 8 
meters from the outcrop surfaces was maintained to optimize image resolution and coverage, 
with an average distance of 12.9 meters. 

The images were captured while the RPAS remained stationary in the air, ensuring consistent 
spacing and overlap between consecutive shots, with a minimum forward overlap of 80% and 
side overlap of 70%. Although this stationary method enhanced image consistency, it prolonged 
the data collection time, resulting in significant variations in lighting conditions throughout the 
survey. To mitigate these effects, histogram matching equalization was applied using a Python-
based algorithm (Python, 2023). A single image was first manually corrected in Adobe 
Photoshop (Adobe Inc, 2024) to serve as the reference, and this correction was then used to 
homogenize lighting and contrast across the entire dataset. A comparison between a raw image 
and its histogram-equalized counterpart is presented in Fig. 5.4. Consequently, two image sets 
were generated for each outcrop: 497 raw images for Assado and 450 raw images for Vapumas, 
along with corresponding histogram-equalized versions. 

 
Fig. 5.4. Comparison between a raw image (A) and its corresponding histogram-equalized counterpart 

(B) from the Assado outcrop dataset. Histogram equalization was applied to reduce lighting and 
contrast variations, enhancing image consistency for further processing. 

5.3.1.2. Lithofacies labeling 
Accurate lithofacies labeling of outcrop images is a critical step in the proposed workflow, 

enabling detailed pixel-wise classification necessary for subsequent 3D modeling. The labeling 
process involves assigning a lithofacies class to each pixel in the images, which supports precise 
spatial mapping of geological units and enhances the interpretability of the resulting models. 

Due to the complexity of the images and the need for interpretative consistency, manual 
annotation was restricted to a subset of images, consisting of 49 images from the Assado 
outcrop and 31 from Vapumas. These images were chosen to cover the entire spatial extent of 
the outcrops, ensuring that all lithofacies, including those with lower occurrence proportion, 
were adequately represented. This manual labeling was performed by experts using Adobe 
Photoshop (Adobe Inc, 2024), where each lithofacies was assigned a specific binary mask 
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forming the ground truth required for supervised CNN training. Each mask represents a 
lithofacies class, creating individual class layers used during the training process. Fig. 5.5 
illustrates the eleven lithofacies classes employed for labeling, with representative photographs 
of each lithofacies, as well as examples of labeled images from the Vapumas outcrop. An 
additional class, “others” (Fig. 5.5), was defined to include image portions not corresponding 
to lithofacies (e.g., vegetation, sky, road). 

 
Fig. 5.5. Summary of lithofacies classes used for image labeling. The table lists the class labels, brief 

geological descriptions, corresponding mask colors, and representative field photographs illustrating 
each lithofacies. Colors were consistently applied throughout the study for lithofacies identification 
in image segmentation and 3D modeling. At the bottom, examples of labeled outcrop images 
illustrating the spatial distribution of lithofacies at the Vapumas outcrop. Labeling followed the 
established protocol described in (Roemers-Oliveira et al., 2025), ensuring methodological 
consistency across studies. 

By limiting manual labeling to a subset of images used for CNN training, this workflow 
enables consistent and scalable facies classification across the dataset, transferring expert 
knowledge with reproducible performance while handling large-scale data processing. 

5.3.1.3. CNN architecture and training 
In supervised approaches, CNN models are trained exclusively on labeled data, relying 

entirely on expert-provided annotations to learn the association between input images and 
predefined class labels. Lithofacies segmentation was performed using a U-Net architecture 
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(Ronneberger et al., 2015), implemented in Python (Python, 2023) with the TensorFlow deep 
learning library (TensorFlow, 2024), widely used for semantic segmentation tasks. 

The model follows a standard encoder–decoder design, with four downsampling blocks, 
each applying max pooling and connected through skip connections. Each block consists of two 
3 x 3 convolutional layers with ReLU activation, and the number of filters doubles with depth 
(32, 64, 128, 256), followed by a bottleneck with 512 filters. The decoder mirrors the encoder 
to restore spatial resolution, also using ReLU activation in its convolutional layers. The final 
output is produced by a 1 × 1 convolution with softmax activation. The model was trained using 
the Adam optimizer, with 10% of the data reserved for validation to monitor performance. Data 
augmentation was incorporated into the training pipeline using geometric transformations such 
as flipping, cropping, rotation, and translation (Shorten and Khoshgoftaar, 2019), increasing 
dataset diversity and helping the model generalize better. 

The manually labeled subset of images was split equally into training and validation sets 
(50%/50%). To ensure reproducibility and comparability across multiple training runs, a fixed 
random seed (101) was set, guaranteeing consistent selection between training and validation 
images for meaningful comparisons. All CNN training and inference tests were performed on 
a laptop equipped with a 12th-generation Intel Core i9 processor, an Nvidia 3080 Ti graphics 
card, and 64 GB of RAM. 

After initial model training and validation, once satisfactory performance metrics were 
obtained, the CNN was retrained using the full set of manually labeled images to maximize the 
training dataset. This expanded training improved model robustness and generalization. The 
refined model was subsequently applied to classify all remaining unlabeled images in the 
dataset, ensuring comprehensive lithofacies segmentation across the entire image collection. 

5.3.2. Performance evaluation 
Model performance was evaluated using a holdout set comprising 50% of the manually 

labeled images not included in the training subset, providing an independent assessment of the 
model’s generalization capabilities. The evaluation metrics were derived from the confusion 
matrix components defined as: 

• True Positive (TP): Number of pixels correctly predicted as belonging to a given 
lithofacies class. 
 
• False Positive (FP): Number of pixels incorrectly predicted as belonging to a given 
class. 

 
• True Negative (TN): Number of pixels correctly predicted as not belonging to a given 
class. 

 
• False Negative (FN): Number of pixels incorrectly predicted as not belonging to a 
given class. 

 
From these components, the following standard classification metrics (Manning et al., 2009; 

Powers, 2011; Goodfellow et al., 2016) were calculated: 

• Accuracy: The overall correctness of the predictions, calculated as 
 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
TP + TN

𝑇𝑇𝑇𝑇 + 𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹 + 𝐹𝐹𝐹𝐹
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• Precision: The proportion of predicted positive pixels that are correctly identified, 
defined as 
 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =
TP

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

• Recall: The proportion of actual positive pixels that are correctly identified by the 
model, also called sensitivity, given by 
 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =
TP

𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹
 

• F1-Score: The harmonic mean of precision and recall, which balances the two metrics 
to provide a single performance score 
 

𝐹𝐹1 = 2 ×  
Precision ×  Recall
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 + 𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅

 

Accuracy was computed as a global metric reflecting the overall correctness of the model's 
predictions across all classes, while precision, recall, and F1-score were calculated for each 
individual lithofacies class to assess the model's discriminatory performance at the class level. 

Additionally, the loss function was monitored during training to quantify the discrepancy 
between predicted outputs and ground truth labels. Lower loss values indicate better model 
performance and convergence, as the model parameters are optimized iteratively to minimize 
this loss. Together, these metrics provide a comprehensive and robust framework to assess CNN 
model performance, enabling objective comparison between different training strategies 
presented in this work. 

5.3.3. Lithofacies-based point cloud generation 
Lithofacies-specific 3D point clouds were generated using Agisoft Metashape  (Agisoft 

Metashape, 2023). This process requires a fully labeled image dataset, obtained by applying the 
trained CNN to classify all images from the two outcrops analyzed in this study. Processing 
begins with the generation of a sparse point cloud during the image alignment stage using the 
Structure-from-Motion (SfM) technique (Westoby et al., 2012), employing all photos from each 
outcrop. This sparse cloud represents the initial 3D reconstruction, created from tie points 
detected across overlapping images. Subsequently, dense point clouds are generated through 
Multi-View Stereo (MVS) algorithms, following the widely adopted SfM-MVS workflow for 
3D photogrammetric reconstruction from overlapping images (e.g., Lowe, 2004; Furukawa and 
Hernández, 2015; Bistacchi et al., 2022). 

Conventional photogrammetric reconstruction methods utilize the entire image dataset 
indiscriminately. In contrast, the present workflow employs only the segmented portions of 
each image, corresponding to specific lithofacies masks (as illustrated in Fig. 5.3), to 
reconstruct facies-specific 3D models. To achieve this, the sparse point cloud is duplicated 
within the photogrammetry software, creating separate processing chunks for each lithofacies. 
This facies-based segmentation allows for targeted 3D reconstruction and classification, 
focusing exclusively on geologically relevant areas delineated by the lithofacies masks. 

Dense point clouds are subsequently generated facies by facies using a depth-map-based 
MVS algorithm, which estimates depth information from multiple overlapping images and 
integrates this data to produce detailed, lithofacies-specific dense 3D point clouds. A manual 
editing step follows to refine the final point clouds, during which points characterized by low 
confidence (often due to insufficient image overlap) or points not corresponding to the 
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interpreted facies are removed. This quality control ensures that the resulting lithofacies point 
clouds are both spatially accurate and geologically coherent. 

5.3.4. Strategy testing for parameter optimization 
This section presents a series of experiments designed to systematically evaluate the impact 

of different training strategies and parameter settings on the performance of the CNN model, 
which forms the central contribution of this paper. Table 5.1 summarizes the main test 
configurations applied to the Assado and Vapumas datasets. The model performance was 
compared using the evaluation metrics described in Section 5.3.2, ensuring consistent and 
objective assessment across all tested configurations. Only the most relevant and conclusive 
results from these experiments are presented and discussed in the following subsections. 

5.3.4.1. Image resolution and epoch numbers 
A series of tests were conducted on two key parameters, the image resolution and the number 

of training epochs, to optimize model performance while controlling computational cost. The 
goal was to find the best balance between training time and image detail that maximizes 
accuracy without excessive processing. 

Regarding image resolution, training was initially conducted using a downscaled reference 
resolution of 192 × 128 pixels, approximately 42 times smaller than the original (8192 × 5460 
pixels). To assess whether increasing resolution could improve model accuracy, additional tests 
were performed using doubled (384 × 256) and tripled (576 × 384) this reference resolution. 
Higher image resolutions may capture finer geological features and textures but also increase 
computational demands and training time. 

An epoch is defined as one complete pass through the entire training dataset (Goodfellow et 
al., 2016), during which the model iteratively adjusts its parameters by learning from the data 
to improve performance. As the number of epochs increases, the model refines its internal 
representations and prediction capabilities: too few epochs may lead to underfitting, where the 
model fails to capture underlying patterns, while too many may cause overfitting, where the 
model memorizes the training data and performs poorly on unseen samples. To identify an 
appropriate balance, training was performed with 25, 50, and 100 epochs, and results were 
evaluated accordingly. 

5.3.4.2. Comparison of labeled image proportions 
To evaluate the impact of training dataset size on model performance, experiments were 

conducted using different proportions of manually labeled images from the Assado and 
Vapumas sites. For the Assado outcrop, approximately 10% of the total image dataset was 
labeled and used for model training, corresponding to 49 images. This proportion results from 
the prior application of the method on this outcrop, as detailed in Roemers-Oliveira et al. (2025). 
For the Vapumas outcrop, about 7% of the dataset was labeled, with 31 images manually 
annotated. 
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Table 5.1. Summary of experimental test configurations for CNN training and evaluation. Each test is coded according to the parameter and dataset used: resolution (R), 
epochs (E), labeled image proportion (P), interpretation review (I), and data augmentation (EQ for equalized images only, RQ for raw plus equalized images). The 
outcrop associated with each test is indicated as Assado (A) or Vapumas (V). 

R1-A Resolution 192 × 128 pixels 100 49 Hybrid layer as SND Equalized images Assado

R2-A Resolution 384 × 256 pixels 100 49 Hybrid layer as SND Equalized images Assado

R3-A Resolution 576 × 384 pixels 100 49 Hybrid layer as SND Equalized images Assado

E1-A Epochs 384 × 256 pixels 25 49 Hybrid layer as SND Equalized images Assado

E2-A Epochs 384 × 256 pixels 50 49 Hybrid layer as SND Equalized images Assado
E3-A Epochs 384 × 256 pixels 100 49 Hybrid layer as SND Equalized images Assado

P1-A 	Labeled image proportion 384 × 256 pixels 100 49 Hybrid layer as SND Equalized images Assado

P1-V 	Labeled image proportion 384 × 256 pixels 100 31 Hybrid layer as SND Equalized images Vapumas

IG-A Interpretation review 384 × 256 pixels 100 49 Hybrid layer as GST Equalized images Assado

IS-A Interpretation review 384 × 256 pixels 100 49 Hybrid layer as SND Equalized images Assado

IG-V Interpretation review 384 × 256 pixels 100 31 Hybrid layer as GST Equalized images Vapumas

IS-V Interpretation review 384 × 256 pixels 100 31 Hybrid layer as SND Equalized images Vapumas

EQ-A Data augmentation 384 × 256 pixels 100 49 Hybrid layer as SND Equalized images Assado

RQ-A Data augmentation 384 × 256 pixels 100 49 Hybrid layer as SND Raw + Equalized images Assado

EQ-V Data augmentation 384 × 256 pixels 100 31 Hybrid layer as SND Equalized images Vapumas
RQ-V Data augmentation 384 × 256 pixels 100 31 Hybrid layer as SND Raw + Equalized images Vapumas

VA-V Cross-outcrop test 384 × 256 pixels 100 49 / 31 Hybrid layer as SND Raw + Equalized images Assado (train) / 
Vapumas (test)

DatasetGeological 
Interpretation OutcropTest 

Code Parameter/Type Resolution Nº of labeled 
imagesEpochs
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5.3.4.3. Geological interpretation review 
In the study area, a hybrid lithofacies layer occurs at the transition between the basal 

siliciclastic-dominated interval and the overlying carbonate-dominated deposits. In a previous 
interpretation (Roemers-Oliveira et al., 2025), the uppermost layer of the littoral open-lake 
facies association was labeled as grainstone (GST), based on its significant carbonate content 
observed in thin sections. However, as discussed by these authors, CNN-based classification 
frequently misclassified this layer as sandstone (SND), due to its visual similarity to sandstone 
in field photographs. 

Since the CNN model relies solely on image-based features, the hybrid layer was re-
evaluated to better reflect the model’s input data. Accordingly, the label was revised from GST 
to SND in all relevant manually labeled images. Subsequent performance tests were conducted 
to assess the impact of this adjustment on classification accuracy. 

5.3.4.4. Data augmentation: raw and equalized images 
This strategy investigates the use of both equalized and raw image sets to increase the 

variability of training data without requiring additional manual labeling. Since both datasets 
represent the same geological features, the same interpretation masks are applied to each 
version. By duplicating the input data in this manner, the model is exposed to a broader range 
of visual conditions, such as variations in lighting and contrast, which may enhance its 
generalization capability during training and improve robustness against illumination 
variability in field imagery. 

5.4. Results 

5.4.1. Impact of image resolution and epoch numbers 

5.4.1.1. Image resolution 
Image resolution significantly affects the CNN model ability to segment lithofacies 

accurately, especially for thin or subtle geological features. To evaluate the influence of image 
resolution on model performance, three resolution levels were tested using the Assado dataset: 
the reference resolution (192 × 128 pixels), double (384 × 256 pixels), and triple (576 × 384 
pixels) the reference resolution. Fig. 5.6 illustrates examples of image downscaling applied for 
CNN training, showing the original high-resolution image alongside progressively downscaled 
versions used to evaluate the balance between image detail and computational efficiency. 

The computational cost increased exponentially with image size. On the Assado outcrop, 
processing a single epoch required approximately 20 seconds at base resolution, 85 seconds at 
double, and 198 seconds at triple resolution. Performance evaluation employed the F1-score 
metric for each lithofacies class, chosen because it jointly considers precision and recall, 
offering a balanced measure of classification effectiveness, as shown in Fig. 5.7, which displays 
the F1-scores per lithofacies for the three resolution tests. 

The base resolution model achieved an overall accuracy of 78%. Doubling the resolution 
improved accuracy to 83%, with performance gains observed across all lithofacies classes. This 
increase was especially notable for thinner lithofacies such as crystalline carbonates (CLC) and 
rudstone (RUD), where F1-scores increased substantially (from 0.19 to 0.64 for CLC, and from 
0.39 to 0.57 for RUD). In contrast, tripling the resolution provided only a modest increase in 
overall accuracy to 85%, just 2% higher than the double resolution model. Moreover, the per-
class F1-scores showed subtle gains overall when comparing triple to double resolution, with 
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all classes improving slightly except for grainstone (GST), which remained unchanged, and 
mudstone (MUD) and heterolith (HET), which experienced slight decreases (with MUD 
decreasing from 0.72 to 0.71, and HET from 0.89 to 0.85). 

 
Fig. 5.6. Example of image downscaling applied for CNN training, showing the original resolution (A) 

and progressively higher downscaled resolutions used to test the balance between detail and 
computational cost (B–D). 

 
Fig. 5.7. F1-score performance for each lithofacies class across three image resolution tests on the 

Assado dataset: base, double, and triple resolution (R1-A, R2-A, R3-A, accuracies 78%, 83%, and 
85%, respectively). 

An accuracy-to-time ratio analysis indicated that the double resolution test offered the most 
efficient trade-off between performance improvement and computational cost. Consequently, 
this resolution was adopted as the standard setting for subsequent CNN training and testing in 
the remaining experiments. 
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5.4.1.2. Epoch numbers 
The number of epochs plays a critical role in CNN model convergence and generalization. 

Training was performed for 25, 50, and 100 epochs to identify an appropriate balance between 
underfitting and overfitting. From 50% of the dataset reserved for training, 90% of the images 
were used for training and 10% for validation, which was used to monitor the model’s 
convergence and detect overfitting through accuracy and loss metrics computed on both 
subsets. Training loss and accuracy were calculated on the training portion (displayed as blue 
curves), while validation loss and accuracy were computed on the validation subset (orange 
curves), as shown in Fig. 5.8. 

 
Fig. 5.8. Training and validation accuracy (top row) and loss (bottom row) curves for CNN models 

trained with 25 (E1-A), 50 (E2-A), and 100 (E3-A) epochs using double resolution images. Training 
metrics (blue curves) were computed on 90% of the training dataset, while validation metrics (orange 
curves) correspond to the remaining 10%. These plots illustrate the model’s convergence behavior 
and stability across epochs, with improved performance and more stable convergence observed as 
the number of epochs increases, with no evident signs of overfitting in any of the models. 

At 25 epochs, both accuracy and loss curves (Fig. 5.8A–B) were unstable and diverged, 
indicating underfitting and insufficient learning. At 50 epochs (Fig. 5.8C–D), the curves 
approached convergence, with stabilization beginning around 35 to 40 epochs, where the loss 
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and accuracy curves plateaued, forming a ‘floor’ for loss and a ‘ceiling’ for accuracy. However, 
full stabilization could not yet be confirmed. The model trained for 100 epochs demonstrated 
clear convergence, with well-defined accuracy ceilings (Fig. 5.8E) and loss floors (Fig. 5.8F) 
for both training and validation sets, indicating robust learning without overfitting. Overfitting 
is identified when a significant gap emerges between the training and validation curves, 
reflecting poor generalization; this suggests that the model memorizes training data rather than 
learning underlying patterns. The observed performance improvements justify selecting 100 
epochs as the standard for subsequent experiments, balancing model accuracy and training time. 

5.4.2. Effect of labeled image proportions 
Following the precedent established in Roemers-Oliveira et al. (2025), a labeled image 

proportion of approximately 10% was used for the Assado outcrop (49 images). For the 
Vapumas outcrop, 7% of the image dataset was labeled (31 images). The experiments presented 
here were conducted using only the equalized images for both outcrops. Performance metrics 
including precision, recall, and F1-score were evaluated per lithofacies class, and overall 
accuracy was calculated to assess model generalization. 

Fig. 5.9 presents the comparative results between the two outcrops, illustrating the impact 
of labeled image proportion on model classification performance. The overall accuracies 
achieved were 83% for Assado (P1-A) and 85% for Vapumas (P1-V), showing that comparable 
area coverage led to similar performance, with precision, recall, and F1-scores generally 
consistent across both outcrops. Notable strengths were observed in classes such as shale 
(SHL), siltstone (SLT), heterolith (HET), and grainstone (GST), all exhibiting F1-scores above 
0.8 in both outcrops. Lower F1-scores were observed in less frequent or more challenging 
lithofacies, such as stromatolite (STR) and crystalline carbonate (CLC), with STR reflecting its 
complex geometries and CLC corresponding to a thin layer, even thinner at the Vapumas 
outcrop. 

 
Fig. 5.9. Classification performance by lithofacies for Assado (P1-A) and Vapumas (P1-V) using 

labeled image proportions of 10% and 7%, respectively. Precision, recall (bars), and F1-score (lines) 
are shown for each class. 

Although it may seem that a smaller proportion of labeled data at Vapumas was sufficient to 
achieve similar performance compared to Assado, the results indicate that the key factor is the 
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effective coverage of training images relative to the outcrop area. Considering only the images 
used for CNN training (half of the labeled dataset), these correspond to 0.51 of the total Assado 
outcrop area and 0.45 of the Vapumas outcrop area. This shows that, rather than an ideal 
percentage of the total dataset, it is more consistent to define the training set based on the 
number of images required to cover between 45–50% of the outcrop area, since the Vapumas 
outcrop has a smaller surface area and therefore required a lower proportion of images, as both 
outcrops were surveyed following similar acquisition protocols. 

5.4.3. Influence of geological interpretation review 
This section evaluates the impact of revising the geological interpretation of the hybrid 

lithofacies layer on the performance of CNN-based lithofacies classification. In previous work 
(Roemers-Oliveira et al., 2025), this hybrid layer was labeled as grainstone (GST) due to its 
carbonate-rich composition observed in thin sections. However, its visual similarity to 
sandstone (SND) in field images often led to misclassification by the CNN model. 

Fig. 5.10A–F illustrate examples of the hybrid layer interpretation in the Assado and 
Vapumas outcrops, showing the original images and the labels before (GST) and after (SND) 
the reinterpretation. Subsequent classification tests were performed to assess how this 
reinterpretation influences model accuracy. 

 
Fig. 5.10. Example of geological interpretation review at the Assado (A–C) and Vapumas (D–F) 

outcrops. Panels A and D show the original RGB images highlighting the hybrid lithofacies layer 
(white arrow). Panels B and E depict the initial interpretation labeling this layer as grainstone (GST). 
Panels C and F show the revised interpretation, with the hybrid layer relabeled as sandstone (SND). 

The comparative performance metrics presented in Fig. 5.11 indicate minimal differences 
between the two interpretations. For Assado, overall accuracy was 82% with the hybrid layer 
labeled as GST and 83% when relabeled as SND. Similarly, Vapumas showed accuracies of 
84% and 85%, respectively. The F1-score lines for each lithofacies class in both outcrops almost 
completely overlap, reflecting consistent classification performance regardless of 
interpretation. Although minor metric variations occur across classes, no significant changes 
attributable to the reinterpretation were observed. 
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Fig. 5.11. Comparative classification performance metrics for the Assado (A) and Vapumas (B) 

outcrops, showing precision and recall (bars) and F1-score (lines) per lithofacies class. Results 
compare the initial geological interpretation (IG) with the revised interpretation (IS), where the 
hybrid layer is relabeled from GST to SND. 

Given the similarity in model outcomes, the revised interpretation labeling the hybrid layer 
as sandstone (SND) was adopted for subsequent analyses. This decision aligns with the layer’s 
stratigraphic position as the uppermost unit within the siliciclastic-dominated open-lake interval 
(see Fig. 5.2), providing a more coherent geological context for model training and 
classification. 

5.4.4. Data augmentation: Effects of raw and equalized images 
This section evaluates the impact of data augmentation by combining equalized and raw 

images on the classification performance of the CNN model for both the Assado and Vapumas 
outcrops. For the Assado outcrop, the model trained solely on equalized images (EQ-A) 
achieved an overall accuracy of 83%, which improved significantly to 90% when trained on the 
augmented dataset combining raw and equalized images (RQ-A). Most lithofacies exhibited 
increases in precision, recall, and F1-score with data augmentation, reflecting enhanced model 
robustness to visual variability. Notable improvements were observed in classes such as 
stromatolite (STR), sandstone (SND), rudstone (RUD), laminite (LMT), and mudstone (MUD). 
The only exception was the crystalline carbonate (CLC) class, which showed declines in all 
metrics, suggesting that this lithofacies is difficult to identify using the tested data augmentation 
approach (Fig. 5.12A). 

 

Fig. 5.12. Classification performance metrics for Assado (A) and Vapumas (B) outcrops comparing 
models trained with equalized images only (EQ) and with both raw and equalized images (RQ). Bars 
represent precision and recall, while lines indicate F1-scores for each lithofacies class. 

Similarly, for the Vapumas outcrop, the model trained on equalized images alone (EQ-V) 
reached an overall accuracy of 85%, which increased to 91% with the addition of raw images 
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in the training set (RQ-V). The augmented dataset led to improvements in most lithofacies, 
including significant gains in grainstone (GST), shale (SHL), sandstone (SND), laminite 
(LMT), mudstone (MUD), rudstone (RUD), and stromatolite (STR), which showed the largest 
increase. Performance metrics remained practically unchanged for heterolith (HET), siltstone 
(SLT), and tuff (TUF), with slight, non-significant decreases in F1-score for SLT and TUF. 
Unlike Assado, the crystalline carbonate (CLC) class exhibited improvements in precision, 
recall and F1-score with data augmentation, with the latter rising from 0.34 to 0.42, though the 
values remained relatively low (Fig. 5.12B). 

Overall, this data augmentation strategy demonstrates clear benefits for lithofacies 
classification accuracy in both outcrops, primarily by increasing the model robustness to 
varying visual conditions. However, it approximately doubles the computational time required 
for model training, which should be considered in practical applications. 

5.4.5. 3D Point Cloud Modeling and Cross-Outcrop Test 

5.4.5.1. Point Cloud Generation with CNN Output 
The final 3D point cloud models for the Assado and Vapumas outcrops, shown in Fig. 5.13, 

were generated by integrating the outputs of the optimized CNN models discussed in previous 
sections. These models employ classifications based on double resolution images, 100 training 
epochs, and labeled image proportions of approximately 10% for Assado and 7% for Vapumas. 
For geological consistency, the hybrid lithofacies layer was interpreted as sandstone (SND) in 
both outcrops. The CNN models were trained using a combination of raw and equalized images, 
which demonstrated the best classification performance according to the metrics evaluated. 

The Assado point cloud model corresponds to the results of the RQ-A model (Fig. 5.12A), 
while the Vapumas model is based on the RQ-V data (Fig. 5.12B). Both dense point clouds 
were generated through the Multi-View Stereo (MVS) algorithm applied to the CNN 
classification masks, using the medium resolution setting available in Metashape (Agisoft 
Metashape, 2023). Subsequently, expert manual editing was performed to remove erroneously 
classified points (false positives); however, it is not possible to add points in areas where 
classifications are absent. The gaps observed in the classified point clouds correspond mainly 
to zones covered by vegetation, which were labeled as the ‘others’ class and excluded from the 
lithofacies classification. 

This study focused on the Balbuena III Sequence and, although lower (Balbuena II) and 
upper (Balbuena IV) sequence intervals were occasionally interpreted and appear in some 
photographs, their classified point cloud portions were manually removed, as they fall outside 
this study’s scope. 

As illustrated in Fig. 5.2, the Assado and Vapumas outcrops are separated by only 225 
meters, supporting the expectation of strong stratigraphic correlation between them. In general, 
the stacking patterns in both outcrops are well preserved and correlatable. While the overall 
lithofacies distribution shows good lateral continuity and agreement between the two outcrop 
models, some expected variations are present, especially in thinner, less extensive layers such 
as rudstone (RUD) and stromatolite (STR). For example, five distinct RUD layers are visible 
in Assado compared to four in Vapumas. Vapumas displays two STR layers, whereas Assado 
shows only one. These observations align with prior manual geological interpretations. 
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Fig. 5.13. Final 3D point cloud models of the Assado (panels A and B) and Vapumas (panels C and D) outcrops. Panels A and C show the textured DOMs, while panels 
B and D display the full classified point clouds. The white arrows mark a thin mudstone (MUD) layer within shale (SHL) that appears discontinuous in the models. 
The yellow arrows indicate a bioclastic rudstone (RUD) layer that also appears discontinuous in the models. Both layers are continuous in the field.
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The thinner (<20 cm thick), less frequent layers posed greater challenges in accurate 
representation, particularly in demonstrating lateral continuity. A notable example is a thin 
mudstone (MUD) layer embedded within a shale (SHL) interval, marked by a white arrow in 
Fig. 5.13 on both models. Similarly, a bioclastic rudstone (RUD) layer, indicated by yellow 
arrows in the same figure, also appears discontinuous in the models, although it is continuous 
in the field. The crystalline carbonate (CLC) layer, despite its thinness and inherent complexity, 
was successfully reconstructed in both point cloud models. 

5.4.5.2. Generalization Test Across Outcrops 
The cross-outcrop generalization test evaluated the performance of the CNN model trained 

exclusively on the Assado dataset (RQ-A) when applied to classify the Vapumas dataset images 
(VA-V). This approach ensures the elimination of data leakage and bias, as the model had no 
prior exposure to any Vapumas images during training. The 31 manually labeled images from 
Vapumas were used solely for independent evaluation of the model’s predictive accuracy. 

Fig. 5.14 presents precision, recall, and F1-score metrics per lithofacies class for this test. 
The model achieved a global accuracy of 74%, with individual lithofacies performance 
categorized as follows: strong performance (F1 > 0.7) for grainstone (GST), shale (SHL), 
laminite (LMT), and sandstone (SND); moderate performance (F1 between 0.5 and 0.7) for 
siltstone (SLT), tuff (TUF), mudstone (MUD), and heterolith (HET); and lower performance 
(F1 < 0.5) for stromatolite (STR), rudstone (RUD), and crystalline carbonate (CLC). 

 
Fig. 5.14. Performance metrics (precision, recall, and F1-score) of the cross-outcrop test (VA-V) where 

the CNN model trained on Assado (RQ-A) was applied to classify Vapumas images. The overall 
accuracy was 74%. 

While optimal lithofacies classification is achieved by training on the same outcrop, this 
cross-outcrop test demonstrates the method’s robustness and validates that the CNN learns 
geological features rather than simply memorizing training data. It provides crucial evidence of 
the model’s generalization capacity and reliability across spatially separated but geologically 
related datasets. 

Visually comparing the final edited 3D point cloud model generated by the VA-V 
predictions (Fig. 5.15) with the Vapumas model trained on its own dataset (RQ-V, Fig. 5.13D), 
both models exhibit strong similarity in spatial distribution and recognition of major lithofacies. 
Some challenges persist, notably in the continuity and representation of thinner or more 



197 
 

complex lithofacies, such as the crystalline carbonate (CLC), which appears more fragmented 
in the VA-V model when examined in three dimensions. 

 
Fig. 5.15. Final edited 3D lithofacies point cloud model for Vapumas generated from VA-V cross-

outcrop predictions. Despite some fragmentation in thin lithofacies such as crystalline carbonate 
(CLC), major lithofacies are well recognized compared to the Vapumas model trained on its own 
dataset (RQ-V, Fig. 13D). The arrows show lithofacies that appear discontinuous in the model: white 
indicates a thin mudstone (MUD) layer within shale (SHL); yellow indicates a bioclastic rudstone 
(RUD) that becomes discontinuous at both ends of the layer. Both are continuous in the field. 

5.5. Discussion 

5.5.1. Performance evaluation 
The primary objective of this study was to define guidelines that balance model performance 

with computational efficiency, making CNN-based lithofacies classification feasible on 
standard personal computing resources. While advanced solutions such as clusters or high-
performance computers (HPC) can alleviate computational demands, these resources are not 
always available. This work therefore establishes a practical trade-off between classification 
accuracy and processing time, adapted to the specific geological setting, as highlighted by 
Bergen et al. (2019) and Han et al. (2023). 

The discussion that follows is organized into four main points: (i) the identification of 
optimal training parameters, (ii) the benefits of data augmentation through the integration of 
raw and equalized images, (iii) the cross-outcrop test as evidence of genuine model learning 
and generalization, and (iv) the role and limitations of different performance metrics, 
complemented by expert visual assessment. Together, these elements provide practical 
guidelines for the application of CNN-based lithofacies classification in outcrop analog studies. 

The experiments conducted identified optimal parameters tailored to the requirements of this 
study. The combination of a double-resolution reference input (384 × 256 pixels), 100 training 
epochs, labeling enough images to ensure the training set covers approximately 50% of the 
outcrop area, and the integration of raw and equalized images proved to be an efficient and 
effective configuration, with no evidence of underfitting or overfitting. Importantly, the results 
show that rather than an ideal percentage of labeled images, the most consistent criterion is the 
effective coverage of training images relative to the outcrop area. In practice, this means that 
the number of images to be annotated must be adjusted according to outcrop size and acquisition 
conditions, such as the degree of image overlap. 
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The strategy of combining raw and equalized images yielded considerable gains in 
classification accuracy, increasing it by approximately 7 to 8%, without requiring additional 
annotation. This effectively augmented data diversity, enhancing model learning capabilities 
while only increasing computational runtime during execution, without additional investment 
in expert labor. 

The cross-validation test, in which the model trained on the Assado outcrop was applied to 
Vapumas, confirmed that the CNN was genuinely learning discriminative patterns rather than 
merely memorizing training data (no data leakage occurred). This generalization capacity 
underscores the robustness of the method. Although pixel-level metrics decreased in this 
transfer scenario relative to training and testing on the same outcrop (Fig. 5.14), the final 3D 
lithofacies-classified point clouds (Fig. 5.13 and Fig. 5.15) exhibited remarkable similarity. 

Regarding evaluation, pixel-based metrics such as accuracy, recall, and F1-score provide a 
quantitative measure of performance, but they only partially capture geological complexity. For 
example, the continuity of strata, which is a key element in geological interpretation, is not 
measured by these metrics and should be incorporated into future work. In this context, visual 
accuracy assessed by an expert becomes a valuable criterion. While subjective, this type of 
evaluation reflects practical geological use cases, where maintaining stratigraphic organization 
and enabling correlation across strata is more relevant than achieving 100% pixel-level 
accuracy. The results demonstrated that even when some classes presented lower F1-scores, the 
overall stratigraphic organization was preserved and interpretable. Manual refinement of the 
classified 3D point clouds also becomes a practical advantage of expert validation, since in this 
study approximately four hours were sufficient to refine an entire outcrop, whereas labeling a 
single image with the lithofacies complexity of SBIII required at least the same amount of time. 
This highlights the advantage of minimizing labeled data, as point cloud corrections provide a 
faster and more effective way to ensure reliable model performance than expanding image-level 
annotation. 

5.5.2. Geological implications 
Beyond defining parameter guidelines, the results also provide insights into how CNN-based 

classification handles different lithofacies characteristics within the Balbuena III Sequence. 
Even though F1-scores above 0.7 were obtained for most lithofacies in both outcrops (Fig. 
5.12), some lithofacies, such as crystalline carbonate (CLC), bioclastic rudstones (RUD), and 
stromatolites (STR), showed lower performance. These aspects are addressed here in relation 
to two key challenges: (i) thin lithofacies layers and (ii) complex geometries. A third point of 
discussion highlights (iii) variations in facies patterns. Together, these elements underscore the 
geological implications of the proposed workflow for sedimentological and stratigraphic 
interpretation in DOMs. 

Thin lithofacies layers, particularly those thinner than 20 cm, represent one of the most 
critical challenges. RUD, CLC, and volcanic tuff (TUF) correspond to thin units, and their 
recognition is directly affected by the image downscaling applied in this study. With an 
effective resolution of about 3.4 cm/pixel, strata thinner than 15–30 cm (5–10 pixels) are less 
reliably represented, constraining the detection of fine layers. Within this context, CLC was the 
lithofacies with the lowest performance metrics, particularly in the Vapumas outcrop. This layer 
has special importance as it marks the Cretaceous–Paleogene (K/Pg) boundary. Precisely for 
this reason, CLC was deliberately maintained in the labeling despite its reduced thickness. The 
results show that it was more effectively identified in the Assado outcrop, where it is slightly 
thicker, but even in the cross-outcrop validation model (Fig. 5.15) it was successfully 
reconstructed, enabling recognition of the K/Pg boundary event within the classified 3D point 
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clouds. Similarly, RUD layers were recognized in the point clouds where they occur, although 
their continuity was not always preserved (e.g., white and yellow arrows in Fig. 5.13B, D and 
Fig. 5.15). In contrast, TUF exhibited different behavior: although thin, it was consistently 
detected, likely due to its distinctive whitish color contrasting with the surrounding dark shale 
(SHL). 

Complex geometries also represent a challenge for CNN classification. STR exemplifies this 
difficulty, as it may occur as laterally continuous biostromes or as isolated bioherms 
interbedded with or laterally transitioning into laminite (LMT) (Roemers-Oliveira et al., 2015). 
This variability in geometry, size, and distribution, combined with limited color contrast, 
complicates its representation both in CNN-based classification and in photogrammetric 
reconstructions. The observed variability in STR detection suggests that further methodological 
refinements may be required to fully capture its spatial complexity. 

Finally, facies with transitional patterns highlight the interpretative dimension of lithofacies 
classification. The hybrid sandstone layer initially labeled as grainstone (GST) illustrates this 
case. Geological data inherently involve interpretational choices, and revisiting these 
interpretations is often necessary to ensure methodological consistency and geological 
coherence (Bergen et al., 2019; Karpatne et al., 2019). Initially labeled as GST, the hybrid layer 
exhibited ambiguous predictions in the CNN outputs, as reported by Roemers-Oliveira et al. 
(2025), sometimes appearing as GST, sometimes as sandstone (SND), including lateral 
transitions between these facies. A subsequent reinterpretation aligned the classification with 
SND, consistent with its stratigraphic position within the siliciclastic-dominated open-lake 
interval. Performance tests showed only minor differences between the two labeling strategies, 
indicating that geological knowledge should guide such decisions rather than small variations 
in quantitative metrics. This underlines the importance of integrating CNN-based classifications 
with field and laboratory observations. 

Taken together, these results demonstrate that CNN-based workflows, while 
methodologically optimized, also yield relevant geological implications. Strategies can be 
adapted depending on the main objectives of the study. In the case of SBIII, the applied 
workflow enabled the generation of lithofacies-classified 3D point clouds that preserve key 
stratigraphic markers while also revealing challenges in representing thin and complex 
lithofacies. 

5.6. Conclusions 
This study established guidelines that optimize the balance between classification accuracy 

and computational efficiency in CNN-based lithofacies classification from outcrop imagery. 
Systematic testing of image resolution, training duration, labeling proportions, geological 
interpretation strategies, and data augmentation showed that a supervised CNN workflow can 
be applied on standard computing resources while still producing geologically coherent and 
spatially consistent 3D lithofacies-classified point clouds. The optimized configuration, which 
combined images at double the reference resolution, 100 training epochs, training images 
covering about half of the outcrop area, and the integration of raw and equalized images, proved 
to be a robust strategy that enhances performance and reduces annotation effort. 

Beyond methodological advances, the results highlighted key geological implications. The 
workflow preserved the lateral continuity of major lithofacies and revealed the limitations 
posed by thin and complex geometries. It also reinforced the interpretative dimension of 
lithofacies labeling, showing that geological reasoning remains essential when addressing 
ambiguous cases, as exemplified by the reinterpretation of the hybrid layer. 
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Although the framework proved effective for the Balbuena III Sequence, broader 
applicability to other depositional systems or more heterogeneous stratigraphic contexts 
remains to be tested. Potential improvements for future work include more systematic strategies 
for image selection to ensure that labeled datasets capture the full range of facies and their 
textural and color variations, and the development of new performance metrics that better 
reflect geological coherence. Alternative machine learning strategies such as semi-supervised 
and active learning also represent promising directions. Semi-supervised learning combines a 
small set of labeled data with a larger pool of unlabeled samples to improve model performance, 
while active learning directs expert annotation toward the most informative images selected by 
the algorithm, optimizing the use of limited ground-truth data. 

In summary, this work provides a practical guideline for applying CNN-based classification 
in 3D DOMs, demonstrating how optimized configurations enhance performance while 
minimizing annotation requirements. While challenges remain, the approach contributes to 
scalable digital workflows that complement traditional fieldwork and support both academic 
and applied studies of outcrop analogs. 
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This chapter is based on an article in preparation, for which the target journal will soon be 
defined. 

Outcrop-based hyperspectral data for lithofacies discrimination in 
lacustrine deposits in the Salta Basin, Argentina 

Eduardo Roemers-Oliveira1,2*, Sophie Viseur1, Marcos Rafael Nanni3, Felipe Guadagnin4, 
Ítalo Gomes Gonçalves4, Guilherme de Godoy Rangel4, Caio Almeida3, Lorenzo D’Angelo1, 
François Fournier1, Anderson de Lima Gonçalves3, Guilherme Pederneiras Raja Gabaglia2, 

Juan Hernández5 
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Abstract 
Hyperspectral imaging (HSI) is increasingly used for lithological mapping, yet most outcrop 
applications assume full visible to shortwave infrared (VNIR–SWIR) coverage (450–2500 nm), 
while cases restricted to partial wavelength intervals remain underexplored. This study 
evaluates whether near-infrared imagery restricted to 900–1700 nm can discriminate and map 
lacustrine lithofacies in the Balbuena III Sequence (SBIII), Salta Basin, Argentina, based on 
two outcrops (Vapumas and Assado). Full-range field spectroradiometer measurements (450–
2500 nm) defined lithofacies spectral behavior, and Linear Discriminant Analysis (LDA) 
successfully discriminated the ten SBIII lithofacies under ideal spectral coverage. For the 
restricted imagery, spectra from regions of interest in Vapumas were used to train supervised 
models, LDA and a Multilayer Perceptron (MLP), which were subsequently applied to 
Vapumas and Assado, with k-means serving as an unsupervised baseline. Hierarchical 
Agglomerative Clustering (HAC) identified distinct patterns within the limited range and 
guided the definition of three lithological groups. Classified 2D maps generated on four 
hyperspectral cubes reproduced stratified architecture, revealed within-facies heterogeneity, 
and showed that Vapumas-trained models successfully generalized to Assado. The study 
provides a practical workflow for partial-coverage HSI by establishing spectral references, 
using unsupervised analysis to define distinct groups, and applying models to classify 
hyperspectral cubes. Although restricted-range HSI omits key bands (~2150–2260 nm for clays 
and ~2315–2350 nm for carbonates) and cannot fully resolve fine mineralogical variability, it 
still yields geologically coherent facies divisions after lithotype regrouping, providing a 
scalable basis for future 3D, facies-based modeling. 

Keywords: Digital outcrop models; Hyperspectral imaging; Lithofacies discrimination; 
Lacustrine facies; Salta Basin. 

6.1. Introduction 
Spectroscopy is the study of the interaction between matter and electromagnetic radiation, 

where materials can be identified by their unique spectral absorption features (Krupnik and 
Khan, 2019). This principle underpins its growing role in mineralogical identification and 
mapping, for which the visible to shortwave infrared (VNIR–SWIR, 0.4–2.5 µm) range has 
proven crucial for capturing diagnostic bands of several minerals (van der Meer et al., 2012; 
Ghamisi et al., 2017; Peyghambari and Zhang, 2021). Within this range, the visible and near-
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infrared (VNIR, 400–1000 nm) domains are governed by absorption features that are 
particularly diagnostic for iron oxides and hydroxides such as hematite and goethite. In contrast, 
the shortwave infrared (SWIR, 1000–2500 nm) allows the detection of water, metal–OH bend 
combinations, clay minerals, and carbonate varieties (Ghamisi et al., 2017; Krupnik and Khan, 
2019; Koerting et al., 2024). While VNIR–SWIR spectroscopy remains the most widely applied 
for mineral and lithological characterization, recent studies have also explored the mid-wave 
and long-wave infrared (MWIR and LWIR) ranges (e.g., Gairola et al., 2024; Thiele et al., 
2025). 

Hyperspectral imaging (HSI) builds on these principles by acquiring data in hundreds of 
continuous spectral bands, generating a spectral curve for each pixel (Krupnik and Khan, 2019). 
While experimental developments date back to the 1970s, the launch of NASA’s Hyperion EO-
1 in 2000, with 242 spectral bands, marked a turning point by making hyperspectral remote 
sensing broadly accessible (van der Meer et al., 2012; Peyghambari and Zhang, 2021). Since 
then, applications have diversified across scientific and applied domains, with geoscience 
studies in particular showing a marked increase over the past decade (Krupnik and Khan, 2019). 

Within geosciences, HSI has been increasingly applied to mineralogical characterization, 
with growing but more limited applications to lithological studies. Key areas of focus include 
mineral exploration (e.g., Bedini, 2011; Kurz et al., 2012; Salehi et al., 2018; Galdames et al., 
2019; Krupnik and Khan, 2019; Sun et al., 2019), clay mineral discrimination (e.g., Murphy et 
al., 2015; Attallah et al., 2024), and the distinction of carbonate phases such as calcite, dolomite, 
and diagenetic varieties (e.g., Buckley et al., 2013; McCormick et al., 2021; Kurz et al., 2022; 
Camargo et al., 2023; Gairola et al., 2024). Within this context, hyperspectral applications 
involve both non-imaging spectroradiometers (e.g., Souza et al., 2018; Camargo et al., 2023), 
imaging sensors that provide spatial and spectral information (e.g., Kurz et al., 2013; Galdames 
et al., 2019; Jacq et al., 2022; Thiele et al., 2021; Thiele et al., 2022a), and workflows combining 
both approaches (e.g., Kurz et al., 2022). 

HSI is increasingly regarded as a valuable tool in field-based geological studies, particularly 
for mapping mineral and chemical variations in inaccessible, high, or near-vertical outcrops 
extending over kilometers (Kurz et al., 2013). Nevertheless, significant challenges remain, 
including data quality (spatial resolution and signal-to-noise ratio), the complexity of 
calibration and processing, and redundancy among bands, all of which continue to drive 
ongoing research and technological development (van der Meer et al., 2012; Ghamisi et al., 
2017; Peyghambari and Zhang, 2021). In addition to these well-recognized technical 
challenges, the spectral coverage of the data itself can represent a critical limitation. Most 
hyperspectral applications in geosciences have relied on the full VNIR–SWIR range (400–2500 
nm), where the majority of diagnostic mineral absorption features occur. By contrast, the 
potential to discriminate and map lithofacies using restricted spectral intervals has received 
little attention, considering that in many practical contexts only partial wavelength coverage 
can be available. This is particularly relevant when using lighter and less expensive sensors, 
which may represent the only feasible option in certain applications, such as Remotely Piloted 
Aircraft Systems (RPAS)-based surveys. 

This study focuses on the Balbuena III Sequence (SBIII) of the Salta Basin, in the Metán–
Alemanía sector (NW Argentina), an interval comprising a diverse set of lacustrine lithofacies, 
including siliciclastic, carbonate, hybrid, and volcaniclastic types. Two reference outcrops, 
Vapumas and Assado (Fig. 6.1), were selected, where SBIII is well exposed and has been 
previously characterized in detail sedimentologically and stratigraphically by Roemers-Oliveira 
et al. (2025). Point-based field spectroscopy (portable spectroradiometer, 450–2500 nm) was 
acquired to characterize the hyperspectral behavior of lithologies. Building on this reference 
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dataset, the study evaluates the potential of hyperspectral imaging for lithofacies identification 
and mapping under constrained spectral conditions, since the available imagery spans only the 
900–1700 nm range. Although this interval excludes many diagnostic features commonly 
exploited in VNIR–SWIR spectroscopy, it retains absorption characteristics and reflectance 
intensity variations that can be leveraged for lithological discrimination. Within this framework, 
supervised discriminant methods, including Linear Discriminant Analysis (LDA) and 
Multilayer Perceptron (MLP), together with unsupervised K-means clustering, were applied 
alongside 2D mapping of hyperspectral cubes to assess classification performance across these 
two outcrops. 

 
Fig. 6.1.  Location of the Vapumas (25°16′39″S, 65°22′34″W) and Assado (25°16′38″S, 65°22′26″W) 

outcrops near Cabra Corral Lake, Salta Province, Argentina. Main panel: Sentinel-2 True Color 
image showing outcrops along RP-47. Upper right: isopach map of the Yacoraite Formation, 
highlighting carbonate thickness variations after Marquillas et al. (2011). 
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6.2. Geological setting 
Located primarily in northwestern Argentina and extending into parts of Bolivia and 

Paraguay, the Salta Basin (Turner, 1958; Marquillas et al., 2005) spans approximately 150,000 
km² and contains a sedimentary succession exceeding 5,000 m in thickness (Del Papa and 
Salfity, 1999). Its evolution reflects Cretaceous rifting linked to the Gondwana breakup, 
followed by a transition to compressional tectonics during the Eocene Andean orogeny 
(Hernández and Echavarria, 2009). 

The basin’s architecture includes several sub-basins (Marquillas et al., 2005), with the 
Metán–Alemanía Sub-basin, the southernmost sector of the basin, serving as the study area. 
The sedimentary infill is traditionally divided into syn-rift and post-rift phases. The former 
comprises fault-controlled depocenters developed during the Cretaceous, while the latter, 
beginning in the Maastrichtian, is associated with thermal subsidence and widespread tabular 
deposition (Del Papa and Salfity, 1999; Salfity and Marquillas, 1999; Hernández et al., 1999). 
A central uplift, the Salta–Jujuy Arch, remained exposed until the late Danian (Gómez Omil 
and Boll, 1999, 2005). Interpretations diverge regarding the continuity of the post-rift phase 
into the Paleocene, with some authors proposing a renewed extensional episode termed the Pre-
Olmec Phase (e.g., Gómez Omil et al., 1989; Gómez Omil and Boll, 1999), while others 
consider it part of a prolonged sag phase (e.g., Reyes and Salfity, 1973; Marquillas et al., 2005). 

Stratigraphically, the Salta Group encompasses Cretaceous to Paleogene units and includes 
the Pirgua, Balbuena, and Santa Bárbara subgroups (Moreno, 1970; Reyes and Salfity, 1973). 
These units can be grouped into supersequences within a sequence stratigraphic framework 
(Bianucci et al., 1981; Hernández et al., 1999). The Balbuena Supersequence, deposited during 
the post-rift phase, comprises four sequences, Balbuena I, II, III, and IV (Boll, 1991; Hernández 
et al., 1999, 2008), and is characterized by lacustrine strata exhibiting a cyclic pattern and strong 
lateral continuity, with depositional sequences traceable over tens of kilometers (e.g., 
Hernández et al., 1999; Bento Freire, 2012; Pedrinha et al., 2015; Roemers-Oliveira et al., 
2025). 

The Balbuena III Sequence (SBIII) ranges from 28 to 33 m in thickness and comprises 
carbonate, siliciclastic, and hybrid deposits accumulated in a lacustrine setting, where climate 
exerted a primary influence on sedimentation. Its lithofacies include carbonate facies such as 
oolitic and bioclastic grainstones and packstones, rudstones, floatstones, carbonate mudstones, 
laminites, and stromatolites; siliciclastic facies consisting of very fine-grained wavy 
sandstones, siltstones, and clay-rich mudstones; and hybrid facies represented by hybrid 
sandstones and marls. These lithofacies are grouped into four facies associations that reflect 
distinct hydrodynamic conditions and paleogeographic settings. Associations linked to open 
lake systems include both marginal and profundal settings, characterized mainly by mixed and 
siliciclastic deposits. In contrast, closed lake associations are dominated by carbonate facies, 
deposited under more evaporative and hydrologically restricted environments (Roemers-
Oliveira et al., 2025). 

Vertically, the lithofacies show the recurrence of two elementary sequences, expressed as 
transgressive–regressive (T–R) successions. This stratigraphic organization exhibits high-, 
medium-, and low-frequency cyclicity, with individual sequences traceable laterally for several 
tens of kilometers across the basin (Roemers-Oliveira et al., 2025). This stratigraphic 
arrangement is synthesized in Fig. 6.2, which illustrates how climatic-driven base-level 
variations controlled the alternation between siliciclastic- and carbonate-dominated successions 
within the SBIII.
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Fig. 6.2. Schematic representation of the stratigraphic organization and cyclicity of the Balbuena III Sequence (SBIII) in the study area. SBIII consists of recurrent 

transgressive–regressive (T–R) elementary sequences, reflecting climatically driven base-level variations. The lower interval (A) is dominated by siliciclastic facies 
linked to open lake conditions, whereas the upper portion (B) is characterized by carbonate-rich facies related to closed lake settings. This stacking pattern expresses 
high-, medium-, and low-frequency cyclicity through systematic vertical changes in facies proportions and depositional conditions. Facies codes: SND = sandstone, 
RUD = rudstone, SHL = shale, HET = heterolithic facies (sandstone–siltstone interbeds), LMT = laminite, STR = stromatolite, GST = grainstone, MUD = carbonate 
mudstone.
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The absence of coarser siliciclastic sediments in the Cabra Corral reservoir area may be 
explained by the presence of the Guachipas High, which separates the Metán and Alemanía 
sub-basins. Although distinct in geometry, these sub-basins are commonly treated together in 
the literature due to their closely linked sedimentary evolution. The Guachipas High likely acted 
as a barrier to sediment transport, restricting coarse clastic input and influencing lateral facies 
transitions (Hernández et al., 1999; Bento Freire, 2012; Magalhães et al., 2020; Roemers-
Oliveira et al., 2025). A detailed representation of the stratigraphic column for the Vapumas 
outcrop, considered as a reference section of the SBIII, is provided in the Database and Methods 
Section (see Fig. 6.3), where the distribution of sampling points is also illustrated. 

6.3. Database and methods 

6.3.1. Field data acquisition 
Field data were acquired from two outcrops, Vapumas and Assado, located near Cabra 

Corral Lake in the Salta Basin (Fig. 6.1). These outcrops have previously been investigated for 
detailed sedimentological and vertical stratigraphic characterization (Roemers-Oliveira et al., 
2025). A series of photographs was acquired using a Remotely Piloted Aircraft System (RPAS) 
to generate Digital Outcrop Models (DOMs), as detailed in Section 6.3.1.1. In addition, point-
based hyperspectral measurements were acquired with an ASD FieldSpec portable 
spectroradiometer, and hyperspectral images were collected with a tripod-mounted camera, as 
described in Sections 6.3.1.2.1 and 6.3.1.2.2, respectively. 

Complementary to the imaging datasets, 61 rock samples were collected from the Vapumas 
outcrop (sample locations are shown as yellow circles in Fig. 6.3 and Fig. 6.4) to support 
geochemical analyses. These sampling points correspond to the same positions where field 
hyperspectral spectroscopy measurements were conducted. 

6.3.1.1. Photogrammetry 
High-resolution DOMs were generated for the Assado and Vapumas outcrops using a DJI 

Remotely Piloted Aircraft System model Matrice 300 RTK equipped with a Zenmuse P1 
camera with a 35 mm lens and a real-time kinematic (RTK) Global Navigation Satellite System 
(GNSS) for centimeter-scale positioning accuracy. Image acquisition was carried out with the 
camera lens facing the outcrop surface. Flights were conducted at a minimum distance of 8 m 
from the outcrop faces, with an average of 12.9 m at both Assado and Vapumas. A total of 497 
images were collected at Assado and 450 at Vapumas in stationary-flight mode, operated 
manually by two pilots: one controlling the RPAS and the other positioning the camera, 
ensuring the required image overlap (≥80% forward and ≥70% side). While effective for 
geometric accuracy, this method resulted in variations in lighting conditions due to extended 
acquisition time. To mitigate this, histogram matching was applied using a Python-based script 
to standardize brightness and contrast across the image set. 

Photogrammetric processing followed a Structure-from-Motion (SfM) and Multi-View 
Stereo (MVS) workflow (Lowe, 2004; Bistacchi et al., 2022), implemented in Agisoft 
Metashape (Agisoft, 2023). The output consisted of 3D dense point clouds and textured meshes 
that reconstruct photorealistic outcrop models, with a final spatial resolution of approximately 
1.57 mm per texture element at Assado and 1.68 mm at Vapumas. 
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Fig. 6.3. Simplified vertical stratigraphic section of the Vapumas outcrop (modified from Roemers-

Oliveira et al., 2025) indicating the sampling positions and the locations where spectral 
measurements were acquired using a portable spectroradiometer. 
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6.3.1.2. Hyperspectral data acquisition 

6.3.1.2.1. Field hyperspectral spectroscopy 
Point-based hyperspectral data were acquired using a portable ASD FieldSpec FS3 350–

2500 JR spectroradiometer, coupled with a contact probe equipped with an internal halogen 
light source, which provides stable and controlled illumination during measurements. The 
system collects reflectance spectra over the 350 to 2500 nm spectral range, using three 
detectors: a silicon array for 350–1000 nm, and two InGaAs arrays covering 1000–1800 nm 
and 1800–2500 nm, respectively. The spectral sampling interval is 1.4 nm in the visible to near-
infrared (VNIR, 350–1000 nm) and 2 nm in the shortwave infrared (SWIR, 1000–2500 nm), 
resulting in spectra composed of over 2000 spectral bands. The measurement footprint was 
approximately 10 mm in diameter, corresponding to the field of view of the probe. 

Radiometric calibration was performed using a Spectralon white reference panel (Labsphere 
Inc., North Sutton, NH, USA), which was measured regularly during the acquisition process to 
ensure consistency across measurements. The contact probe setup eliminates the influence of 
ambient light and ensures standardized acquisition by maintaining a fixed illumination 
geometry and distance between the sensor and the rock surface. Spectral measurements were 
performed directly on the outcrop surface (Fig. 6.4A), targeting preferentially flat, clean, and 
fresh areas to maximize the signal-to-noise ratio and minimize the effects of surface roughness. 
For each lithofacies identified, a set of seven individual spectra were acquired at each 
representative position to capture the inherent variability in the spectral response. 

A systematic acquisition strategy was applied along the entire stratigraphic profile, from 
base to top, ensuring full capture of the vertical variability in lithofacies. At each lithofacies 
change, a new set of spectra was recorded following the same acquisition protocol. This 
procedure provided a continuous and representative characterization of the spectral variability 
associated with each lithofacies. 

6.3.1.2.2. Field hyperspectral imaging 
Hyperspectral images were acquired using a Specim AFX-17 hyperspectral camera, which 

operates with a pushbroom scanning system based on an InGaAs (Indium Gallium Arsenide) 
detector. The system covers the near-infrared (NIR) to shortwave infrared (SWIR) range from 
900 to 1700 nm, divided into 224 spectral bands with a spectral resolution of approximately 3–
4 nm. The sensor has a fixed focal length of 18 mm and records 640 pixels per line with a 
physical pixel size of 15 µm. The average camera-to-target distance during acquisition was 
about 10 m, resulting in a ground sampling distance (GSD) of ~1 cm per pixel per side. 

For image acquisition, the camera was mounted on a tripod equipped with a rotational stage, 
positioned on the cargo bed of a pickup truck parked on the opposite side of the road, directly 
facing the outcrop (Fig. 6.4B). Each image was captured with the sensor in a stationary position 
using the rotational scan mode. Successive images were acquired by moving the tripod setup 
along the front of each outcrop at 3 m intervals, ensuring sufficient overlap and continuous 
coverage of the exposed stratigraphic sections. A calibration panel coated with barium sulfate 
(BaSO₄), due to its high reflectance and near-lambertian behavior, was placed within the field 
of view during each acquisition to support the conversion to reflectance. All images were 
collected under stable daylight conditions to minimize shadow effects and illumination 
variability along the scanning direction. 
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Fig. 6.4. Perspective view of the Vapumas DOM (Balbuena III Sequence, Salta Basin) showing sample locations (yellow circles) for hyperspectral and laboratory analyses. 
Detail photographs illustrate field data acquisition: (A) portable hyperspectral spectrometer measurements using lithofacies-based sampling, and (B) hyperspectral 
imaging using a vehicle-mounted system.
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6.3.2. Data processing and analytical methods 

6.3.2.1. Hyperspectral data processing 

6.3.2.1.1. Field hyperspectral spectroscopy processing 
The raw spectral measurements were initially handled using the ViewSpec software 

(Analytical Spectral Devices, n.d.). Since the calibration with the standard white reference panel 
is stored in the software, each measurement is directly displayed in reflectance, with values 
between 0 and 1 (e.g., de Oliveira et al., 2023). 

6.3.2.1.2. Field hyperspectral imaging processing 
The raw hyperspectral images were converted from digital numbers to reflectance, thereby 

reducing the influence of electronic noise and variable illumination conditions (e.g., Kurz et al., 
2013; Lorenz et al., 2018; Thiele et al., 2022b). This procedure included subtraction of the dark 
image, captured with the shutter closed, followed by the use of a barium sulfate (BaSO₄) 
reference panel (e.g., Henriksen et al., 2022; Granemann et al., 2025). The workflow was 
implemented in ENVI (Exelis Visual Information Solutions, 2015) with the Scan Normalization 
tool, where a region of interest (ROI) was defined on the panel in each image to guide the 
conversion to reflectance. 

The processing steps involved dark current subtraction and normalization of spectral values 
based on the ROI. After normalization, images were rotated to achieve horizontal alignment, 
and spectral bands strongly affected by atmospheric absorption, particularly between 1340–
1463 nm, were excluded. The corrected hyperspectral cubes were exported in ENVI format 
(.hdr) to retain the full spectral information, while additional false-color composites in JPG 
format were generated from selected bands for visualization purposes. 

6.3.2.2. Geochemical analyses (XRF) 
Bulk geochemical analyses were carried out on the 61 rock samples collected from the 

Vapumas outcrop to quantify the proportions of major oxides and mineral phases potentially 
influencing the hyperspectral response. These data supported the definition of spectral 
signatures for the samples and, consequently, for the lithofacies analyzed. 

Major element compositions were determined by X-ray fluorescence (XRF) at SGS Geosol 
Lab, Brazil, following industry-standard procedures based on fused glass disc preparation with 
lithium tetraborate flux. The analytical workflow included drying the samples at approximately 
105 °C, pulverizing them to 95% passing 150 mesh using a steel mill, and producing fused 
beads to ensure total decomposition of the samples. This enabled accurate determination of 
major oxides, including SiO₂, Al₂O₃, Fe₂O₃, CaO, MgO, TiO₂, P₂O₅, Na₂O, K₂O, MnO, and loss 
on ignition (LOI). The LOI was determined separately by gravimetric analysis at 1000 °C. 
Quality control protocols were applied throughout all stages of sample preparation and analysis. 

6.3.2.3. Discriminant methods 
Three complementary approaches were applied for lithofacies discrimination: Linear 

Discriminant Analysis (LDA), Multilayer Perceptron (MLP), and K-means clustering. These 
methods were selected to encompass both supervised strategies (LDA and MLP) and an 
unsupervised approach (K-means), enabling comparison between traditional statistical 
classification and deep learning workflows. One of the main objectives was to apply 
discriminant analyses both to field spectroscopy data and to hyperspectral cubes, to generate 
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2D lithofacies maps of the outcrops. LDA of field spectroscopy was performed in RStudio 
(Posit, 2023) using the MASS package (Ripley and Venables, 2009). LDA of hyperspectral 
cubes was performed in Python (2023) using scikit-learn (Pedregosa et al., 2011), the MLP was 
implemented with the TensorFlow deep learning library (TensorFlow, 2024), and K-means 
clustering was carried out with scikit-learn (Pedregosa et al., 2011). In addition, Principal 
Component Analysis (PCA) and Hierarchical Agglomerative Clustering (HAC) were applied 
for dimensionality reduction and exploratory grouping of lithofacies, using scikit-learn 
(Pedregosa et al., 2011) in Python (2023). 

To evaluate the performance of the discrimination methods, when applicable, standard 
classification metrics were calculated, including accuracy, precision, recall, and F1-score 
(Manning et al., 2009; Powers, 2011; Goodfellow et al., 2016). Accuracy expresses the 
proportion of correctly classified instances among all predictions. Precision quantifies the ratio 
of correctly predicted positive cases relative to all predicted positives, whereas recall (or 
sensitivity) measures the proportion of correctly identified positives relative to all actual 
positives. The F1-score corresponds to the harmonic mean of precision and recall, providing a 
balanced assessment of performance even under class imbalance. Stacked bar plots derived 
from the aggregated confusion matrix were also employed as a comprehensive visualization 
tool, illustrating the cumulative distribution of predicted versus actual classes across all 
executions. 

Finally, to assess the performance of the discrimination analyses, the predicted maps from 
LDA, MLP, and K-means were quantitatively compared to the ground truth, considering only 
pixels within the interpreted regions. The ground truth was derived from expert-driven manual 
interpretation of lithofacies boundaries directly on the outcrops, supported by detailed 
geological knowledge of the study area. The complete workflow integrating all stages of 
hyperspectral data processing, classification, and evaluation is summarized in Fig. 6.5. Further 
details on each of the discriminant methods used are presented below. 

6.3.2.3.1. Linear Discriminant Analysis (LDA) 
Linear Discriminant Analysis (LDA) is a supervised statistical technique introduced by 

Fisher (1936) to classify observations into predefined groups. It relies on estimating the 
conditional probability that an observation belongs to a given class based on its predictor 
variables, as expressed in Eq. (1) (Rakotomalala, 2020): 

 𝑃𝑃(𝑌𝑌 =  𝑦𝑦𝑘𝑘 | 𝑋𝑋) (1) 

where 𝑌𝑌 denotes the assigned class, 𝑦𝑦𝑘𝑘 represents one of the possible classes, and 𝑋𝑋 = (𝑥𝑥1,
𝑥𝑥2, … , 𝑥𝑥𝑝𝑝) is the vector of predictor variables. LDA assumes that the predictor variables follow 
a multivariate normal distribution within each class, with identical variance–covariance 
matrices (homoscedasticity) (Ghojogh and Crowley, 2019; Tharwat et al., 2017). 

Under these assumptions, the method defines a linear discriminant function for each class, as 
shown in Eq. (2) (Saporta, 2011; Rakotomalala, 2020): 

𝑑𝑑(𝑦𝑦𝑘𝑘 ,𝑋𝑋) =  𝑎𝑎𝑘𝑘0 + 𝑎𝑎𝑘𝑘1𝑥𝑥1 + ⋯+ 𝑎𝑎𝑘𝑘𝑘𝑘𝑥𝑥𝑝𝑝  (2) 

where the coefficients 𝑎𝑎𝑘𝑘𝑘𝑘 are estimated from the training data. Classification is achieved by 
assigning each observation to the class associated with the highest discriminant function value. 
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Fig. 6.5. Integrated workflow applied for hyperspectral lithofacies discrimination and mapping. (A) 

Definition of hyperspectral behavior of lithofacies based on field spectroscopy. (B) Application of 
supervised and unsupervised approaches to hyperspectral imagery for lithofacies mapping and 
performance evaluation. 

LDA was applied in two complementary ways. First, it was used exclusively for evaluating 
classification performance on spectral datasets, namely (i) field spectra acquired with the 
portable spectroradiometer, and (ii) spectra extracted from hyperspectral image ROIs. In this 
case, each dataset was split into 70% training and 30% testing with a stratified procedure that 
ensured representation of every lithofacies in both subsets. After enforcing this per-class 
minimum, the remaining samples were randomly allocated to preserve the overall 70/30 
proportion. Each experiment used a randomly selected seed, and the pipeline was executed for 
10 independent seeds. Performance was summarized using mean accuracy, precision, recall, 
and F1-score across the 10 runs, as well as stacked bar plots. 

Second, LDA was applied with the objective of generating 2D lithofacies maps from 
hyperspectral images. Here, models trained on spectra extracted from ROIs were applied to 
hyperspectral cubes to classify lithofacies directly at the pixel scale. Model robustness was 
initially evaluated using stratified cross-validation with multiple folds, providing estimates of 
average accuracy and variance. However, the model actually used for image classification was 
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trained with a 70/30 train–test split, where the 30% test partition was reserved exclusively for 
independent accuracy assessment. For image application, hyperspectral cubes were processed 
block-wise to optimize memory usage while ignoring invalid pixels. Post-processing involved 
spatial smoothing to reduce noise and isolated misclassifications. The final outputs included 
classified lithofacies maps, delivering continuous spatial representations of lithofacies across 
the outcrops. 

6.3.2.3.2. Multilayer Perceptron (MLP) 
A Multilayer Perceptron (MLP) is a class of feedforward artificial neural networks 

composed of an input layer, one or more hidden layers with nonlinear activation functions, and 
an output layer that provides class probabilities (Haykin, 1999). Each neuron applies a nonlinear 
transformation that enables the network to learn complex mappings beyond linear decision 
boundaries. Conceptually, an MLP can also be viewed as a mathematical function obtained by 
composing simpler functions, where each layer provides a new representation of the input 
(Goodfellow et al., 2016). Training is typically performed using the backpropagation algorithm 
to compute gradients (Rumelhart et al., 1986), combined with optimization methods such as 
Adam (Kingma and Ba, 2015) to update weights iteratively and minimize prediction error. 

The MLP was trained on spectral data extracted from ROIs of the hyperspectral images, 
labeled according to lithofacies classes. For evaluation purposes, its performance was first 
assessed on spectral data through repeated stratified hold-out validation (20 iterations with a 
70/30 partition), ensuring balanced representation of all lithofacies across training and test 
subsets. After this evaluation, a version intended for image application was trained on the 
complete dataset, reserving 20% of the samples for internal validation during training. The 
adopted architecture comprised three fully connected layers of 50 neurons each with ReLU 
activation, interleaved with dropout layers (rate = 0.1), followed by a softmax output layer. 
Training was performed for 100 epochs using the Adam optimizer (learning rate = 3×10⁻³) and 
a batch size of 100. The trained model was subsequently applied to hyperspectral cubes, with 
predictions carried out block-wise (10,000 pixels per block) to optimize memory usage, and 
outputs reconstructed into 2D classified maps. 

6.3.2.3.3. K-means clustering 
K-means is an unsupervised algorithm that groups data into k clusters by minimizing the 

variance within clusters and maximizing separation between them. The method iteratively 
assigns each observation to the nearest cluster centroid and updates centroids until convergence 
(MacQueen, 1967; Hartigan and Wong, 1979; Goodfellow et al., 2016). K-means has been 
widely adopted because its simple design allows for efficient computation and effective 
handling of large datasets (MacQueen, 1967; Jain, 2010). This study used the k-means++ 
initialization method (Arthur and Vassilvitskii, 2007), set to automatically run several 
initializations and retain the best result. The random seed was fixed at 0 to ensure 
reproducibility 

K-means clustering was applied directly to the hyperspectral cubes, with the sole objective 
of generating 2D maps for unsupervised lithofacies separation. Before clustering, invalid pixels 
were excluded, and preprocessing included destriping and dimensionality reduction through 
Principal Component Analysis (PCA). The K-means model was fitted on a representative 
random subset of up to 400,000 valid pixels and then applied block-wise (≈250,000 pixels per 
pass) to the full cube to optimize memory usage. The resulting cluster assignments were 
reconstructed into 2D maps. These unsupervised maps were subsequently compared with the 
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ground truth, and each cluster was assigned the label (and color) of the lithofacies class with 
the highest correspondence. This step enabled direct comparison with the reference data. 

6.3.2.3.4. Auxiliary multivariate tools 

6.3.2.3.4.1. Principal Component Analysis (PCA) 
Principal Component Analysis (PCA) is an unsupervised dimensionality reduction technique 

that transforms correlated variables into a new set of orthogonal components ranked by 
decreasing explained variance (Jolliffe, 2002; Abdi and Williams, 2010). The main objectives 
of PCA are to extract the most relevant information from the dataset, to reduce its 
dimensionality by retaining only the essential variables, to simplify data representation, and to 
analyze the relationships among variables and observations (Abdi and Williams, 2010). 

PCA was employed in specific cases to reduce thousands of spectral bands into a smaller set 
of variables, minimizing redundancy and simplifying the data structure. It was applied to 
compare results obtained from LDA when applied directly to spectroradiometer data versus 
after dimensionality reduction, and as a preprocessing step before K-means clustering of 
hyperspectral cubes, improving the stability of unsupervised classification and reducing noise 
effects. 

6.3.2.3.4.2. Hierarchical Agglomerative Clustering (HAC) 
Hierarchical Agglomerative Clustering (HAC) is an unsupervised technique that organizes 

the data into nested partitions represented as a dendrogram (Gordon, 1987; Everitt et al., 2011; 
Murtagh and Legendre, 2014). In this study, the agglomerative approach was adopted, using 
the Euclidean distance and Ward’s linkage criterion to build the hierarchy. HAC is particularly 
useful for exploratory analysis, as it does not require the a priori definition of the number of 
clusters. 

HAC was employed to explore spectral grouping from hyperspectral images, which cover a 
more limited spectral range compared to field spectroradiometer measurements. The method 
was used to investigate how lithofacies classes group together based on their spectral similarity, 
guiding the selection of the number of clusters prior to supervised classification of hyperspectral 
cubes. 

6.4. Results 

6.4.1. Lithofacies classification and geochemical composition 
Previous studies in the Balbuena III Sequence described 19 lithofacies in detail, 

encompassing siliciclastic, carbonate, hybrid, and volcaniclastic deposits (Roemers-Oliveira et 
al., 2025). For the present study, the focus was placed on evaluating the spectral response of 
lithofacies to hyperspectral data. To ensure both analytical robustness and stratigraphic 
representativity, these lithofacies were grouped into 10 classes (Fig. 6.6), which served as the 
actual classes (ground truth) for supervised analyses. These groups preserve the key 
sedimentological and stratigraphic variability of the SBIII, maintaining their correlation with 
the elementary transgressive–regressive sequences already defined for the study area (Fig. 
6.2A–B. Bulk-rock geochemical compositions for the same classes are presented in Fig. 6.7, 
providing complementary information for lithofacies characterization. 
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Fig. 6.6. Lithofacies identified in the Balbuena III Sequence and used as actual classes for supervised 

analyses (ground truth) in this study. Each facies is illustrated with representative outcrop 
photographs (left) and thin-section micrographs (right), accompanied by a brief description. 
Abbreviations: SLT – siltstone; SHL – shale; HET – heterolith; SND – sandstone; LMT – laminite; 
MUD – carbonate mudstone; GST – grainstone/packstone; RUD – gastropod rudstone/floatstone; 
STR – stromatolite; TUF – volcanic tuff. 
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Fig. 6.7. Bulk-rock geochemical compositions of the lithofacies classes (ground truth) in the Balbuena 

III Sequence. Boxplots show the distribution of major oxides (SiO₂, Al₂O₃, Fe₂O₃, MgO, CaO, K₂O, 
Na₂O, TiO₂, P₂O₅, MnO). Lithofacies codes as defined in Fig. 6.6. 
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The combination of bulk-rock geochemistry and petrographic observations supports the 
interpretation of lithofacies composition, even though no quantified mineralogical data are 
available. Siliciclastic facies (SLT, SHL, HET, SND) are characterized by high SiO₂ contents, 
reflecting quartz, and by Al₂O₃ enrichment in SHL and SLT, indicating the presence of clay 
minerals; sericite (muscovite) and other mica traces are also observed in thin section. Moderate 
K₂O, Na₂O, and TiO₂ suggest K-bearing clays, feldspars, and heavy mineral contributions, 
whereas elevated Fe₂O₃ in SLT and HET reflects iron oxides related to oxidation processes, 
consistent with the reddish hue of these facies. Laminite (LMT) represents a hybrid facies: thin 
sections reveal quartz grains and micas interbedded with lamellar calcite crystals, 
corresponding to intermediate concentrations of SiO₂, Al₂O₃, and K₂O, together with slightly 
elevated MgO and P₂O₅. The P₂O₅ is likely derived from phosphatic fossil fragments, such as 
fish bones, whereas MgO is consistent with dolomite occurrence. The volcaniclastic tuff (TUF) 
displays a distinctive signature with high SiO₂ along with significant CaO, MgO, Na₂O, and 
K₂O, consistent with altered volcanic glass, feldspars, pyroxenes, and secondary clays. 
Carbonate facies (MUD, GST, RUD, STR) are dominated by very high CaO contents, 
especially in GST and RUD, reflecting calcite-rich matrices and bioclasts (particularly 
ostracods and gastropods), although gastropod shells are partially silicified in the RUD facies, 
as illustrated in Fig. 6.6. MgO enrichment in STR and MUD suggests the occurrence of 
microbial dolomite, while discrete P₂O₅ peaks in RUD and STR are likely related to phosphatic 
fossil material. 

In summary, the geochemical signatures align with petrographic observations and typical 
lacustrine patterns: quartz- and clay-rich siliciclastic deposits, mixed carbonate–siliciclastic 
lithotypes, volcaniclastic material with altered mineralogy, and carbonate facies strongly 
influenced by microbial processes. The specific mineralogical combinations suggested in each 
facies are expected to govern their spectral signatures, which are examined in the following 
section. 

6.4.2. Hyperspectral behavior of lithofacies 
Field-acquired spectra for each lithofacies are presented in this section. Fig. 6.8 shows the 

mean curves for each class, whereas Fig. 6.9 illustrates the full variability, including ±1σ 
envelopes, which allow the evaluation of both inter-group trends and intra-facies dispersion. 
The variability range provides a more accurate representation of the spectral signatures of 
lithofacies, since they are composed of mineral mixtures rather than pure components. As a 
result, their signatures are better represented as intervals than as discrete curves. In the graphs 
of Fig. 6.9, this variability is directly influenced by mineralogical heterogeneity and by the 
number of spectra acquired (each sample corresponds to seven measurements performed in 
closely spaced areas). 

Siliciclastic facies (SLT, SHL, HET, SND) display low to moderate reflectance levels and 
discrete clay-related features, with minima around 2200–2220 nm. SLT exhibits the darkest 
curves, nearly flat across the VNIR–SWIR, with stronger absorption in the visible region, 
consistent with its reddish color and high Fe oxide contents. SHL and HET show a gentle 
increase toward the SWIR, with more pronounced clay-related features. SND displays 
intermediate reflectance and smoother curves, with less distinct spectral structure, consistent 
with its quartz-rich composition and lower abundance of strong absorbers, although clay- and 
carbonate-related concavities are still evident. Variability envelopes indicate greater intra-
facies dispersion in SHL (Fig. 6.9B) and HET (Fig. 6.9C), whereas SND (Fig. 6.9D) is more 
homogeneous. SLT presents a narrower envelope (Fig. 6.9A), likely reflecting the limited 
number of samples rather than true homogeneity. 
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Fig. 6.8. Mean hyperspectral reflectance curves of lithofacies in the Balbuena III Sequence, measured 

with a field spectroradiometer. Diagnostic absorption features are highlighted: Fe-oxides 
(hematite/goethite), H₂O (adsorbed/structural, hydrated minerals including clays), 2:1 clays (illite, 
muscovite, smectites), and carbonates (calcite + dolomite; band centers at ~2325 nm for dolomite 
and ~2345 nm for calcite), based on Kokaly (2017). n = total number of measurements. 

Carbonate facies (MUD, GST, RUD, STR) plot at higher reflectance levels and display the 
diagnostic carbonate absorption between ~2330–2350 nm. MUD (Fig. 6.9F) and GST (Fig. 
6.9G) exhibit bright and uniform curves with a well-defined carbonate band. STR (Fig. 6.9I) 
also shows bright, high-contrast curves with the same diagnostic feature. RUD (Fig. 6.9H), in 
contrast, tends to show comparatively lower reflectance among the carbonate facies but still 
preserves the diagnostic carbonate absorption, while presenting a wider envelope that reflects 
its more heterogeneous nature and its occurrence in thin layers frequently interbedded with 
siliciclastic facies (SND and SHL). 

LMT curves, although with mean reflectance values as high as those of the carbonate facies, 
show less prominent features in the clay-related (~2200–2220 nm) and carbonate (~2330–2350 
nm) intervals. Its envelope reveals wide internal variability (Fig. 6.9E), likely associated with 
its hybrid composition. The volcaniclastic facies (TUF) displays relatively high reflectance and 
is distinguished by a clear concavity around 1450–1490 nm. Fig. 6.9J shows its envelope as 
very narrow, most likely due to the small number of measurements. 

The spectral patterns emphasize the consistent differences between siliciclastic and 
carbonate facies, while also revealing the distinctive behavior of hybrid and volcaniclastic 
lithofacies. The variability observed within and between classes provides a solid basis for 
evaluating their separability through subsequent supervised classification. To this end, Linear 
Discriminant Analysis (LDA) was first applied to the full-range spectroradiometer data. 

 



224 
 

 
Fig. 6.9. Hyperspectral signatures of the lithofacies: (A) siltstone, (B) shale, (C) heterolith, (D) 

sandstone, (E) laminite, (F) mudstone, (G) grainstone, (H) rudstone, (I) stromatolite, and (J) volcanic 
tuff. Solid line = mean reflectance; darker band = ±1σ around the mean; lighter band = min–max 
range; n = number of spectra per class. 

6.4.3. Linear Discriminant Analysis (LDA) of hyperspectral data 
This section evaluates whether the lithofacies classes defined from sedimentological and 

geochemical criteria can be discriminated through Linear Discriminant Analysis (LDA). LDA 
was selected as a simple and computationally efficient statistical method, suitable for an initial 
assessment of class separability. The first approach consisted of directly applying LDA to the 
hyperspectral dataset across the full spectral range (450–2500 nm). Data were acquired with a 
portable spectrometer, yielding spectra with more than 2000 bands. Each sample was measured 
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seven times in the field, resulting in a total of 427 spectra. It is widely recognized that in many 
modern applications, including hyperspectral data analysis, the number of descriptors may 
reach hundreds or even thousands, whereas the number of samples often remains relatively 
small. This imbalance, known as the small sample size (SSS) problem, increases the risk of 
overfitting when discriminant methods are applied without prior dimensionality reduction 
(Ghojogh and Crowley, 2019; Tharwat et al., 2017; Rakotomalala, 2020). 

To address this issue, LDA was also applied after dimensionality reduction through Principal 
Component Analysis (PCA). The relationship between the number of retained principal 
components (PCs) and classification accuracy was analyzed to identify both the elbow point 
and the configuration that maximized predictive performance. The elbow point was identified 
at approximately 11 PCs, corresponding to an accuracy of about 68%. Accuracy continued to 
increase gradually beyond this value, reaching 72.5% with the retention of 17 PCs, which 
together explain 99.99% of the total variance. Therefore, the final selection of 17 PCs 
represented a balance between preserving spectral variability and mitigating the risk of 
overfitting, while ensuring that virtually all spectral information was retained. 

LDA without dimensionality reduction consistently outperformed the PCA-based approach. 
Overall accuracy ranged between 85 and 93%, averaging 88% across the ten runs. In contrast, 
PCA-LDA achieved lower performance, ranging from 70 to 80%, with an average of 74%. The 
analysis of precision, recall, and F1-scores (Fig. 6.10A and Fig. 6.10C) highlights marked 
differences among lithofacies. In the direct LDA application, SLT was consistently identified, 
with an F1-score of 1.0. SHL and HET also achieved strong results, both with F1-scores above 
0.9, while SND reached 0.87. Among the carbonates, GST, STR, and RUD recorded F1-scores 
between 0.84 and 0.88. MUD showed the lowest performance across all classes (0.78), whereas 
TUF, with its distinctive spectral signature, reached values close to 1.0. In the PCA-LDA 
approach, an overall decrease in performance was observed, although this strategy reduces the 
risk of overfitting. Among siliciclastic facies, SLT and SHL retained F1-scores above 0.8, while 
SND reached 0.79. In contrast, HET showed the lowest performance, with an F1-score of 0.5. 
Carbonate facies displayed intermediate results, ranging from 0.6 (MUD) to 0.75 (RUD). As in 
the first approach, TUF remained clearly distinguishable, with an F1-score of 0.9. 

Aggregated confusion matrices (Fig. 6.10B and Fig. 6.10D) reinforce these trends. In the 
direct LDA, most lithofacies were predominantly classified into their correct classes, with error 
rates below 20% in most cases (only LMT exhibited higher confusion, with 22%). In the PCA-
LDA model, average accuracy remained above 60%, but with larger variability. Accuracies 
above 80% were restricted to SHL, SND, and TUF, with TUF being the only facies classified 
without errors. Accuracies between 60 and 80% occurred in SLT, LMT, MUD, GST, RUD, and 
STR, while HET showed the lowest accuracy, slightly above 40%. 

The comparison between approaches shows that, despite lower accuracy, PCA-LDA reduces 
the risk of overfitting and underscores the inherent complexity of lithofacies classification, 
where mineral mixtures naturally produce overlapping and variable spectral signatures. 
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Fig. 6.10. Results of Linear Discriminant Analysis (LDA) applied to full-range hyperspectral data (450–

2500 nm), based on ten runs with different seeds. (A) Precision, recall, and F1-scores by lithofacies, 
averages across runs. (B) Stacked bar plots from the aggregated LDA confusion matrix, showing 
prediction distribution per lithofacies. (C) LDA results after Principal Component Analysis (PCA) 
dimensionality reduction (17 PCs, averages across runs). (D) Stacked bar plots from the aggregated 
PCA-LDA confusion matrix. 

6.4.4. Lithofacies classification from hyperspectral image ROIs 
The application of LDA to the full-range field spectrometer dataset (450–2500 nm) primarily 

served to evaluate the discriminability of lithofacies under conditions where all major 
diagnostic absorption features were available. However, since the ultimate goal was to apply 
the discriminant model directly to hyperspectral cubes, the training data also needed to be 
derived from the images themselves, ensuring consistency between origin and spectral 
information. Spectra were therefore collected from regions of interest (ROIs) in the Vapumas 
outcrop, selected whenever possible to correspond to the same stratigraphic layers sampled in 
the field spectrometer dataset. To minimize the impact of underrepresented classes, a minimum 
of 30 spectra per lithofacies was required. The final dataset comprised more than 500 spectra, 
each described by 190 bands. Given this balanced relationship between the number of 
descriptors and samples, dimensionality reduction through PCA was not necessary, and LDA 
was applied directly to the spectral matrix. 

Inspection of Fig. 6.11, which shows the mean spectra of lithofacies extracted from 
hyperspectral images, reveals that the curve shapes lose considerable detail compared to those 
in Fig. 6.8, derived from the field spectrometer dataset. Hyperspectral imagery, with its 
restricted coverage of 900–1700 nm, poses additional challenges for lithofacies discrimination, 
as this interval excludes key diagnostic absorption features, particularly those of clay minerals 
and carbonates beyond 2000 nm. 

The application of LDA to hyperspectral image spectra (Fig. 6.12A) across the ten original 
lithofacies resulted in substantially lower performance compared to field-based data. Overall 
accuracy ranged from 56 to 68% across ten runs, averaging 61%. Precision, recall, and F1-
scores highlight marked differences among lithofacies: while SLT and TUF achieved relatively 
high values, MUD, RUD, and LMT performed poorly. On average, only SLT, SHL, and TUF 
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reached F1-scores above 0.7. The confusion matrix (Fig. 6.12B) confirms this scenario, with 
extensive misclassification and widespread overlap between classes. These results reflect both 
the limited spectral range of the camera (900–1700 nm) and the inherent mineralogical 
heterogeneity of lithologies composed of complex mixtures. 

 
Fig. 6.11. Mean hyperspectral reflectance spectra of lithofacies from the Balbuena III Sequence, 

extracted from regions of interest (ROIs) in hyperspectral images. 

 
Fig. 6.12. Results of Linear Discriminant Analysis (LDA) applied to hyperspectral image data (900–

1700 nm), based on ten runs with different seeds. (A) Precision, recall, and F1-scores by lithofacies 
(averages across runs). (B) Stacked bar plots from the aggregated LDA confusion matrix, showing 
prediction distribution per lithofacies. 

To address this limitation, HAC was applied to determine an appropriate grouping of 
lithofacies. The analysis used the mean reflectance curve of each lithofacies as input and 
revealed a clear subdivision of the lithofacies into three main groups when applying a cut-off 
at a linkage distance of ~4 (Fig. 6.13A). This limited separability indicates that, although 
sedimentologically distinct, many lithofacies do not exhibit sufficiently contrasting spectral 
signatures in this interval, which justifies their regrouping for classification purposes. Group 1 
(pink) includes SLT and HET, which cluster at relatively short distances, reflecting their strong 
spectral similarity. Group 2 (green) comprises SHL, SND, and RUD, which display moderate 
internal variability but form a consistent association. Group 3 (blue) incorporates GST, LMT, 
MUD, TUF, and STR. In general, Groups 1 and 2 encompass siliciclastic facies, with the 
exception of RUD, which, although carbonate, is commonly associated with sandstones and 
shales and may be difficult to isolate given the spectral resolution of the images. Group 3 
includes the remaining carbonate facies together with the volcanic tuff, which, despite typically 
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exhibiting a distinct spectral signature, clustered with this group under the restricted spectral 
interval. 

 
Fig. 6.13. Hierarchical clustering and classification results. (A) Hierarchical dendrogram of lithofacies 

using Ward’s method and Euclidean distance. The cut-off at a linkage distance of ~4 defines three 
main lithofacies groups (pink, green, and blue). (B) Mean reflectance spectra from imagery ROIs for 
the three lithofacies groups. (C) Mean LDA performance metrics (precision, recall, and F1-score) for 
the 900–1700 nm imagery range. (D) Stacked bar plots derived from the aggregated LDA confusion 
matrix, showing proportions of correctly and incorrectly classified samples for each lithofacies 
group. 

The mean spectra of these three groups display clearer separations than those of the 
individual lithofacies (Fig. 6.13B). After regrouping, LDA performance improved 
substantially: overall accuracy ranged from 79 to 85%, with a mean of 81%, and F1-scores 
averaged close to 0.8 for all three groups (Fig. 6.13C). Furthermore, the confusion matrices 
indicate more consistent classifications and markedly reduced error rates (Fig. 6.13D), 
demonstrating that even under restricted spectral conditions, meaningful lithological 
discrimination can be achieved when data are treated at the level of broader groups. 

Considering that the objective is to apply the discriminant model directly to the hyperspectral 
cubes restricted to the available 900–1700 nm range, subsequent classifications were carried 
out using the three-group configuration. 

6.4.5. Discriminant methods applied to the hyperspectral imagery 
To evaluate the performance of discriminant methods directly on hyperspectral cubes, four 

images were selected (V1 and V2 from Vapumas and A1 and A2 from Assado). For each 
outcrop, the pair of images spans the full thickness of the Balbuena III Sequence. Fig. 6.14 
shows the location of the analyzed areas within each DOM, together with the manual 
interpretations provided by an expert. These interpretations, used as ground truth (GT), were 
derived from visual inspection of hyperspectral images converted into RGB for visualization 
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purposes. They provide a reference for evaluation, although they do not share the same spectral 
origin as the data used for model training and classification. 

 
Fig. 6.14. Location of hyperspectral cubes used for classification. (A) Vapumas outcrop with selected 

cubes V1 and V2. (B) Assado outcrop with selected cubes A1 and A2. For each cube, the upper panel 
shows the hyperspectral image converted into RGB, and the lower panel shows the expert-derived 
ground truth (GT) maps with three lithofacies groups (G1–G3). 
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Based on spectra obtained exclusively from ROIs of the Vapumas outcrop, two supervised 
methods were tested: Linear Discriminant Analysis (LDA) and Multilayer Perceptron (MLP). 
Model performance was first evaluated on the Vapumas dataset itself, where ROI data were 
split into 70% for training and 30% for testing, ensuring independent validation for both 
methods. The resulting metrics, presented in Table 6.1 correspond to this internal evaluation 
based on Vapumas data. During training, both LDA and MLP achieved comparable overall 
accuracies (0.85 and 0.86, respectively). Evaluation metrics were satisfactory for both methods, 
with F1-scores above 0.83 across all three groups, indicating that they can be reliably spectrally 
discriminated. 

Table 6.1. Class-level performance metrics for LDA and MLP based on spectral training datasets (ROIs) 
from the Vapumas outcrop. LDA results correspond to a single 70/30 train–test split, while MLP 
metrics are averaged over 20 stratified hold-out iterations with the same partition ratio. Metrics are 
reported per class (G1–G3) prior to model application to hyperspectral cubes. 

Precision Recall F1-score Precision Recall F1-score
G1 0.71 1.00 0.83 0.88 0.96 0.92
G2 0.85 0.81 0.83 0.85 0.86 0.85
G3 0.90 0.85 0.88 0.89 0.85 0.86

Group LDA MLP

 

Subsequently, the models were applied to the hyperspectral cubes, generating 2D prediction 
maps for the three lithofacies groups. In addition to these supervised models, an unsupervised 
K-means clustering approach was also applied, with the number of clusters set to three. After 
classification, clusters were relabeled as G1, G2, and G3 based on maximum correspondence 
with the GT maps, enabling direct comparison with the supervised methods. To assess model 
generalization, the classifiers trained on Vapumas data were also applied to the Assado outcrop 
cubes using the same spectral preprocessing and classification parameters. The products 
generated for the Vapumas outcrop are presented in Fig. 6.15, while the corresponding results 
for the Assado outcrop are shown in Fig. 6.16. To enable a more detailed comparison of 
classification performance, four areas of interest were selected in each outcrop (V1a–V2b in 
Vapumas; A1a–A2b in Assado) (Fig. 6.15 and Fig. 6.16). These windows highlight 
representative contrasts between lithofacies groups and provide a direct evaluation of the 
supervised (LDA and MLP) and unsupervised (K-means) approaches relative to the GT. 

In the Vapumas outcrop (Fig. 6.15), the selected windows (V1a–V2b) illustrate distinct 
behaviors of the classification methods relative to the GT. In V1a, both LDA and MLP 
reproduced the overall stratified distribution of Groups 1 and 2, although LDA produced 
slightly sharper contacts and introduced a greater proportion of G1 interbedded with G2. The 
MLP outputs, by contrast, displayed more internal heterogeneity, with a reduced proportion of 
G1 compared to the GT, where it appears intercalated with both G2 and G3, as well as additional 
thin interbeds of G3 near the top. K-means displayed the highest proportion of G1 of all 
methods and, in this sector, interbedded G1 more with G3 than with G2. In the adjacent window 
(V1b), the GT shows only G2. The LDA classification introduced G1 at the top, while MLP 
added minor intercalations of G3, though in low proportion. K-means produced a more 
balanced mixture of the three groups, with G1, G2, and G3 interbedded in a more homogeneous 
manner, albeit with G2 slightly more abundant. Moving to V2a, the GT shows alternations 
between G2 and G3, which were reasonably well captured by both supervised methods. In both 
LDA and MLP, however, G3 was slightly overrepresented compared to the GT, and in LDA a 
few thin levels of G1 were also inserted. K-means produced a broadly similar distribution but 
with a greater insertion of G1 across the section. Finally, in V2b, the GT once again shows only 
intercalations of G2 and G3. The LDA classification introduced intervals of G1, particularly in 
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the upper part, whereas MLP reproduced only the alternation of G2 and G3, although with 
thinner interbeds compared to the GT. K-means produced the most heterogeneous result, with 
the three groups intercalated and a slight predominance of G1 in the upper portion. 

 
Fig. 6.15. Classification results for Vapumas hyperspectral cubes (V1 and V2). (A) GT maps, (B) LDA 

predictions, (C) MLP predictions, and (D) K-means clustering with three clusters, relabeled as G1–
G3 according to maximum correspondence with GT. Windows V1a, V1b, V2a, and V2b indicate 
areas selected for detailed comparison between methods and GT. 

In the Assado outcrop (Fig. 6.16), the selected windows (A1a–A2b) further illustrate the 
contrasts between the classification methods and the GT. In A1a, where the GT shows 
intercalations of G1 and G2, this pattern was relatively well reproduced by the supervised 
approaches. However, LDA increased the proportion of G1, while MLP introduced additional 
intercalations of G3. K-means, in contrast, produced a markedly different distribution, with G1 
as the dominant group, followed by G3 and only thin, isolated layers of G2. In A1b, where the 
GT characterizes the section exclusively as G2, the LDA classification introduced G1 in the 
upper part of the section, while MLP generated a stronger intercalation of G2 with G3. K-means 
again produced three groups, with G3 occurring sparsely and G1 progressively increasing in 
abundance toward the top. In the upper interval, A2a corresponds to an alternation of G2 and 
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G3 in the GT, with G2 prevailing. LDA accentuated the proportion of G2 and inserted some 
thin levels of G1. MLP also reproduced the alternation of G2 and G3, but with a greater 
proportion of G3 than observed in the GT. K-means produced a thicker layering of the three 
groups, with G1 being the least frequent. Finally, in A2b, where the GT records alternations of 
G2 and G3 with a predominance of G3, the LDA classification reduced the abundance of G3, 
introduced intervals of G1, and shifted the predominance toward G2. MLP also emphasized G2 
over G3, though it did not introduce G1. K-means generated the most homogeneous 
distribution, with all three groups occurring more evenly throughout the section. 

 
Fig. 6.16. Classification results for Assado hyperspectral cubes (A1 and A2). (A) GT maps, (B) LDA 

predictions, (C) MLP predictions, and (D) K-means clustering with three clusters, relabeled as G1–
G3 according to maximum correspondence with the GT. Windows A1a–A2b highlight representative 
areas used for detailed comparison between methods and the GT. White arrows show the impact of 
shadows onto the LDA and K-means results. 

The performance of the three approaches (LDA, MLP, and K-means) was quantitatively 
assessed by comparison with the GT maps, restricted to the expert-interpreted areas. Metrics of 
precision, recall, F1-score, and overall accuracy were computed for each lithofacies group 
(Table 6.2). When compared to the GT, the supervised methods consistently outperformed the 
unsupervised K-means clustering. The best correspondences with the GT occurred in the lower 
sections of both outcrops (V1 and A1), where LDA achieved the highest accuracies (0.79 and 
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0.80, respectively), while MLP yielded slightly lower but comparable results (0.76 and 0.73, 
respectively). In contrast, K-means showed consistently poorer correspondence with the GT, 
with accuracies not exceeding 0.51. 

For the upper sections (V2 and A2), the comparisons revealed larger discrepancies relative 
to the GT. LDA accuracies were 0.58 in V2 and 0.40 in A2, while MLP yielded 0.56 and 0.48, 
respectively. K-means accuracies remained constant at 0.48 in both cubes, similar to those 
obtained in the lower sections. Analysis of group-level metrics and visual inspection of the 
classified maps (Fig. 6.15 and Fig. 6.16) indicate that supervised models tend to overpredict 
underrepresented groups in the GT, such as G3 in V1 and A1 or G1 in V2 and A2, leading to 
apparent mismatches in the evaluation. 

A key observation is that both supervised methods displayed consistent behavior, with 
stronger agreement with the GT in the lower sections and weaker performance in the upper 
ones. Results from the Assado outcrop were broadly similar to those from Vapumas, with A2 
performing worse than V2 but still demonstrating the generalization capacity of models trained 
exclusively on Vapumas. This consistency indicates that the spectral responses captured by the 
models are indeed associated with lithological groupings rather than outcrop-specific features. 
By contrast, the unsupervised K-means approach performed poorly overall, as expected, since 
it captures intrinsic spectral relationships without considering class labels. 

While GT comparisons provide a useful benchmark, it should be noted that they reflect an 
expert-based interpretative model constrained by outcrop visibility and field observations, 
rather than an absolute reference. Consequently, hyperspectral-based classified maps often 
appear more heterogeneous than the GT, capturing spectral variations beyond the limits of 
visual interpretation. 

6.5. Discussion 
Field-based spectroscopy covering the VNIR–SWIR range (450–2500 nm) provided the 

spectral reference framework for this study, allowing the identification of diagnostic absorption 
features that distinguish the ten lithofacies considered in SBIII. Discriminant analysis (Fig. 6.6) 
applied to this full-range dataset confirmed that all lithofacies could be reliably separated when 
the complete spectrum was available. This demonstrates that, under ideal spectral coverage, 
hyperspectral imaging has the capacity to resolve the full lithological variability of the 
sequence. However, when restricted to the 900–1700 nm interval, analyses required grouping 
individual lithotypes into broader facies categories, emphasizing that the main limitation arises 
from spectral coverage rather than from the classification methods themselves. 

Within this restricted range, lithofacies discrimination relies less on diagnostic absorption 
features, which are smoother, and more on reflectance amplitude and spectral slopes (Fig. 
6.13B). This guided the decision to avoid normalization procedures such as continuum removal 
or spectral rescaling, which were tested but did not improve classification results, as they tend 
to attenuate amplitude differences (Clark, 1999) that, in this case, represent the main 
discriminant signal. By preserving absolute reflectance values (between 0 and 1), amplitude 
contrasts between groups remained the key factor enabling separation. 

HAC played a central role in this workflow by objectively assessing the natural separability 
of the spectral data and guiding the decision on the number of groups that could be meaningfully 
distinguished. The three clusters defined through HAC (Fig. 6.13) correspond to the main 
lithological contrasts: Groups 1 and 2 comprise predominantly siliciclastic facies, whereas 
Group 3 encompasses carbonate ones. Among the siliciclastic types, Group 1 is distinguished 
by more oxidized, reddish facies with lower reflectance, while Group 2 includes non-oxidized 
facies with comparatively higher reflectance.  
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Table 6.2. Performance metrics of LDA, MLP, and K-means when compared against the ground truth (GT) maps of the Vapumas (V1, V2) and Assado (A1, A2) outcrops. 
Values above 0.70 are highlighted in gray. 

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

G1 0.62 0.85 0.72 0.73 0.58 0.64 0.30 0.63 0.41
G2 0.87 0.84 0.85 0.82 0.88 0.85 0.86 0.40 0.55
G3 0.02 0.00 0.00 0.10 0.09 0.10 0.02 0.06 0.03

Overall 
accuracy

G1 - - - - - - - - -
G2 0.50 0.43 0.46 0.44 0.56 0.50 0.40 0.40 0.40
G3 0.68 0.67 0.68 0.68 0.55 0.61 0.66 0.52 0.58

Overall 
accuracy

G1 0.57 0.95 0.71 0.78 0.68 0.73 0.34 0.73 0.46
G2 0.97 0.76 0.85 0.88 0.76 0.81 0.95 0.44 0.60
G3 0.25 0.06 0.10 0.04 0.38 0.07 0.00 0.04 0.01

Overall 
accuracy

G1 - - - - - - - - -
G2 0.43 0.62 0.51 0.48 0.77 0.59 0.56 0.48 0.52
G3 0.53 0.18 0.27 0.52 0.20 0.29 0.66 0.49 0.56

Overall 
accuracy

Group
LDA MLP K-meansOutcrop 

cube

0.58 0.56 0.48

Vapumas 
(V2)

0.79 0.76 0.43

Vapumas 
(V1)

0.40 0.48 0.48

Assado    
(A2)

Assado    
(A1)

0.80 0.73 0.51
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It is particularly noteworthy that reliance on reflectance amplitude made the models sensitive 
to external lighting effects. For instance, in some areas, tree shadows reduced pixel brightness, 
causing zones that actually belonged to Group 2 to be misclassified as Group 1 (white arrows 
in Fig. 6.16A, B, and D) by the LDA and K-means models. This misclassification does not 
reflect lithological similarity but rather the impact of diminished illumination, demonstrating 
the influence of acquisition conditions on reflectance-based discrimination. 

The spatial resolution of the hyperspectral imagery (each pixel ~1 cm) introduced additional 
challenges, as each ROI encompassed multiple pixels. In thin geological layers, such as the 
rudstone facies (RUD), pixel mixing likely generated blended signals that hindered accurate 
separation. This effect was further compounded by the local replacement of gastropod shells 
with silica (Fig. 6.6), as observed in thin sections, which caused this carbonate facies to be 
grouped with siliciclastic facies by the classification models. These outcomes demonstrate how 
both spectral mixing and diagenetic overprints can compromise the robustness of 
discrimination. 

An important observation is that the supervised models (Fig. 6.15B, C; Fig. 6.16B, C) 
consistently revealed heterogeneities within lithofacies that were not apparent to the naked eye 
or in field-based interpretation. For example, laminites appeared visually uniform to the 
interpreter, but the models highlighted internal spectral variability in the near-infrared domain, 
likely associated with subtle changes in clay content which are not easily detectable in the 
visible range. Similarly, other carbonate facies exhibited variations that may reflect both 
compositional differences and diagenetic overprints. 

A further consideration is that the ground truth used in this study does not represent an 
absolute reference, but rather an expert-driven interpretative model constrained by outcrop 
visibility and field observations. Even when petrographic thin sections are available, the 
information remains point-based and cannot fully capture lateral or vertical heterogeneity 
within geological bodies. In contrast, hyperspectral data provide a different layer of 
information, capable of detecting spectral variations that are not visually discernible yet some 
of these variations may be influenced by illumination or surface conditions rather than purely 
compositional changes. For instance, subtle increases in clay content within a carbonate 
package initially classified as G3 by the interpreter were revealed by the hyperspectral response 
as internal variability more closely resembling portions of G2. Such effects contribute to the 
apparent reduction in model performance when compared to the ground truth, but in practice 
they reflect complementary perspectives. Consequently, hyperspectral-based classified maps 
often appear more heterogeneous than the ground truth, capturing spectral signatures that 
extend beyond the limits of visual interpretation. 

Supervised models yielded broadly comparable results when evaluated against the ground 
truth, but with some notable differences. In the Assado outcrop, for instance, the MLP model 
proved more robust to external lighting effects, mitigating the impact of tree shadows that 
caused misclassification in the LDA outputs. When the Vapumas-trained models were applied 
to Assado, overall performance metrics remained comparable to those obtained for Vapumas 
itself, although correspondence with the ground truth was stronger in the lower interval (A1) 
than in the upper (A2). Visual inspection further showed that, in Assado, both LDA and MLP 
tended to classify more G2 in areas actually dominated by G3. The MLP also displayed slightly 
greater heterogeneity than LDA, reflecting its ability to capture non-linear relationships in the 
spectral data, which may enhance the detection of subtle within-facies variability while 
increasing interpretative complexity. Although cross-application was not the main objective of 
this work, with Assado serving here as a blind test, future efforts could explore training models 
on both outcrops to improve transferability. 
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The K-means clustering provided an unsupervised baseline, offering an independent view of 
latent spectral structures within the hyperspectral cubes. While its clusters could be matched to 
facies through post-hoc comparison with supervised models or the ground truth, discrepancies 
highlighted its sensitivity to initialization and the absence of geological constraints. Beyond 
serving as a baseline, K-means also enables exploration of latent spectral patterns that may not 
be captured by supervised classifications. In this sense, it can reveal unexpected subdivisions 
or subtle differences within apparently homogeneous facies, potentially indicating geologically 
relevant variations. Even with only three clusters, K-means reproduced the stratified character 
of SBIII while revealing greater internal heterogeneity than the supervised models in certain 
intervals. 

Importantly, across all methods, supervised and unsupervised, the stratified character of 
SBIII was consistently reproduced, underscoring that the hyperspectral signal reflects 
depositional processes such as climatic variations that modulated siliciclastic influx and 
controlled carbonate accumulation in the lacustrine system. Looking forward, future work could 
benefit from integrating hyperspectral cubes with photogrammetric datasets to achieve 
geometric correction and reduce distortions inherent to 2D imagery, such as perspective effects 
and scale inconsistencies. By transferring spectral information onto point clouds, hyperclouds 
can be generated following procedures described by Lorenz et al. (2018), Krupnik and Khan 
(2019), and Thiele et al. (2021). Notably, Thiele et al. (2021) introduced the open-source Python 
library hylite, which provides a workflow for creating hyperclouds by fusing geometric 
information with hyperspectral imaging data, among other functionalities. 

6.6. Conclusions 
Despite the absence of the >2000 nm diagnostic bands for clays and carbonates, 

hyperspectral imaging restricted to 900–1700 nm, supported by field spectroscopy and expert 
interpretation, proved to be effective for lithofacies discrimination and mapping in the Balbuena 
III Sequence (SBIII), Salta Basin, when classes were treated at the level of broader facies 
groups. Key findings show that full-range field spectroscopy (450–2500 nm) separated the ten 
lithofacies with high accuracy using LDA, confirming the spectral distinctiveness of SBIII 
under ideal coverage. For the imagery range (900–1700 nm), HAC revealed three robust 
lithological groups that capture the main siliciclastic–carbonate contrasts. Trained on spectra 
extracted from image ROIs, LDA and MLP produced consistent group-level classifications and 
2D facies maps, showing closer agreement with the ground truth than K-means, as expected 
from their methodological framework. Models trained on Vapumas generalized to Assado, 
indicating that the learned spectral patterns reflect lithological properties rather than site-
specific effects. Comparisons against expert ground truth demonstrated the stratified 
architecture of SBIII and highlighted within-facies heterogeneity that is not always visible in 
the field. 

The study contributes a practical workflow for outcrop-scale facies mapping when only 
partial spectral intervals are available: (i) establish spectral references with field measurements, 
(ii) use unsupervised analysis to determine separable groupings appropriate to the available 
bands, and (iii) apply supervised classification directly to hyperspectral cubes to generate 
consistent, interpretable maps. In lacustrine successions such as SBIII, this approach provides 
spatially continuous, objective information that complements sedimentological logging and 
petrography. 

Limitations arise primarily from (i) the constrained spectral range, which shifts separability 
toward reflectance amplitude and slopes, making results sensitive to illumination; (ii) pixel 
mixing in thin beds and along irregular contacts; and (iii) the interpretative nature of the ground 
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truth, which cannot fully capture lateral and vertical heterogeneity. These constraints may yield 
apparent mismatches when hyperspectral data resolve variability beyond visual criteria. 

Future studies would benefit from quantitative mineralogical data, such as X-ray diffraction 
(XRD), to refine spectral signatures by linking specific absorption bands to clay and carbonate 
phases, allowing a more precise identification of diagnostic features. If the goal is to achieve 
finer facies separation, full spectral coverage remains essential. In addition, integrating 
hyperspectral cubes with photogrammetric DOMs to reduce geometric distortions and project 
spectra onto 3D point clouds would enable more rigorous spatial evaluation. Expanding training 
data across outcrops and acquisition conditions, while exploring illumination-invariant 
preprocessing tailored to amplitude-driven separability, would likely enhance robustness and 
transferability. Taken together, the results demonstrate that even under restricted wavelength 
coverage, outcrop-based hyperspectral imaging can deliver geologically meaningful facies 
maps that preserve the stratified character of SBIII and expose compositional variability. Such 
capability supports lithofacies mapping applicable to reservoir analog studies, mineral 
exploration, and broader geoscientific investigations. 
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7.1. Transversal Discussion 
The transversal discussion seeks to integrate the main findings of the thesis by combining 

results obtained from different datasets, scales, and methodological approaches. Building on 
individual outcomes, the emphasis is on how these complementary approaches, grounded in 
both the scientific and philosophical questions that frame this work, interact to advance the 
understanding of lacustrine depositional systems, their facies architecture, and their potential 
as reservoir analogs. The discussion is organized into four parts: first, the integrative character 
of the work is examined, showing how multi-method and multi-scale strategies provide a 
broader understanding while also revealing strengths and limitations. Second, the stratigraphic 
models derived from the Barre du Cengle and Salta Basin are compared, with attention to 
correlation patterns and distances across lacustrine and lacustrine/palustrine settings. Third, the 
conceptual and applied role of outcrop analogs is addressed, emphasizing their transferability 
to petroleum reservoir studies. Finally, the discussion turns to Pre-salt reservoirs, highlighting 
their challenges and the insights that can be drawn from the analogs studied. 

7.1.1. Integration of Multi-Method and Multi-Scale Approaches 
In petroleum geoscience, professional practice is commonly divided between exploration 

and production. Exploration geologists focus on locating hydrocarbon accumulations at 
regional scales, developing models and predictive criteria to identify depositional architectures 
with reservoir potential. In contrast, production geoscientists operate at much finer scales, 
aiming to understand and model reservoir heterogeneity to support efficient development 
strategies. 

The research developed in this thesis is positioned at the reservoir scale, where data from 
outcrops play a fundamental role in defining conceptual reservoir models. The study focused 
on depositional successions of approximately 30 m in thickness, subdivided into smaller 
stratigraphic intervals for detailed facies and heterogeneity characterization. This approach 
reflects the perspective of production geology, where the core task is to study reservoir 
characteristics and understand how heterogeneities influence fluid flow (Weber and van Geuns, 
2005). Production geoscientists rely on multidisciplinary collaborations that integrate 
sedimentology, diagenesis, structural geology, seismology, petrophysics, geomodelling, and 
geostatistics to construct predictive models (Weber and van Geuns, 2005; Branets et al., 2009; 
Li et al., 2017). Reservoir modeling is inherently multiscale, requiring the reconciliation of data 
ranging from core plugs and well logs to seismic surveys within unified three-dimensional 
frameworks (Branets et al., 2009; Li et al., 2017). Like a puzzle, this process integrates pieces 
from different datasets and disciplines into a coherent framework supporting reservoir 
characterization and development (Bruhn et al., 2017). 

This integrative role is particularly challenging in carbonate systems, where porosity and 
permeability are governed not only by depositional facies but also by diagenetic processes such 
as dissolution, cementation, and dolomitization, as well as by fracture networks and 
karstification (Weber and van Geuns, 2005; Follows, 2025; Mehrabi et al., 2025). Wireline log 
data often fail to distinguish between different carbonate lithofacies, making it necessary to 
combine sedimentological, diagenetic, and structural information for robust flow 
characterization (Follows, 2025). In this context, outcrop analogs play a critical role, providing 
well-constrained spatial information on facies distribution and reservoir body geometries that 
support well-to-well correlations and predictive modeling (Weber and van Geuns, 2005). 

This work follows the reservoir-oriented perspective by adopting a multiscale strategy that 
integrates datasets from the microscopic scale to mesoscale DOMs. Through the application of 
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multiple methods, the research aims to capture heterogeneity and generate parameters that 
contribute to more realistic reservoir-scale frameworks. This perspective is complemented by 
the discussion in Section 4.7.3 of Chapter 4, which addresses the use of outcrop analogs for 
reservoir modeling. 

The HRSS model developed for La Barre du Cengle was progressively constructed through 
the integration of datasets acquired across multiple scales and methods (Fig. 7.1). The work 
began in the field, where vertical stratigraphic sections were logged and samples collected. 
Since the succession is predominantly composed of mud-supported carbonate facies, 
petrographic analysis was fundamental in recognizing microstructural features that refined the 
identification of eight distinct lithofacies. These were grouped into three facies associations 
representing lacustrine, palustrine, and pedogenic domains, and also supported the definition of 
an exposure index. A consistent transition was recognized, from lacustrine → palustrine → 
pedogenic, from west to east. The integration of petrography with field observations allowed 
the identification of five elementary sequences, which were then stacked into small-scale 
sequences. The maximum retraction surfaces (MRSs), which define the boundaries of the small-
scale sequences, could be traced laterally across the cliff thanks to the photogrammetric DOM 
covering the entire Cengle Plateau, enabling the subdivision of the area into four stratigraphic 
intervals (Cengle I to Cengle IV). Geochemical analyses, including carbon and oxygen isotopes, 
together with U–Pb dating, provided chronological and environmental constraints, which were 
further refined through integration with petrographic observations. 

 
Fig. 7.1. Multi-scale integration of datasets applied to build the High-Resolution Sequence Stratigraphy 

(HRSS) model of La Barre du Cengle. 
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The integration of U–Pb dating on micrite with petrographic observations marked a key step 
forward in interpreting the succession. The new ages indicate deposition earlier than previously 
assumed, within the Danian–early Selandian stages, while petrographic analyses revealed the 
occurrence of benthic foraminifera in the uppermost stratigraphic interval (Cengle IV) of the 
Pas du Lièvre section, pointing to increased salinity during this interval. Together, these datasets 
not only support a revision of the chronostratigraphic framework of the Arc Basin but also 
suggest a potential link with marine transgression events documented in the Bas-Languedoc 
Basin during the Danian–Selandian. Importantly, Cengle IV is the only stratigraphic interval in 
which lacustrine facies were identified in the Pas du Lièvre section, the second easternmost 
profile studied. This indicates a phase of greater expansion of Lake Cengle. 

In the Salta Basin, since sedimentological and stratigraphic aspects of this interval have been 
studied for more than a decade, although they remain subject to continuous updates, the present 
work could advance further by applying digital techniques. In particular, these methods were 
used to generate DOMs in which stratigraphic and facies products were highlighted (Fig. 7.2), 
while remaining firmly oriented by the high-resolution stratigraphic framework of the Balbuena 
III Sequence. This digital emphasis was anchored in field logging, petrography, and lithofacies 
analysis, which provided the essential basis for interpretation. In this case, 19 lithofacies were 
described and grouped into four facies associations, which at low frequency record the 
transition from an open-lake system dominated by siliciclastic facies at the base to a closed-
lake system with predominantly carbonate facies at the top. This evolution allowed the 
definition of two elementary sequences, each corresponding to one of the dominant facies 
intervals, which recur and stack into four small-scale sequences, bounded by maximum 
retraction surfaces. Because the elementary sequences of the Balbuena III Sequence are 
predominantly of transgressive–regressive (T−R) type and exhibit strong facies contrasts, they 
offered favorable conditions for testing innovative workflows. DOMs not only enabled detailed 
mapping of stacking patterns and facies distribution but also served as the spatial reference for 
integrating complementary approaches such as LBP, CNN, and HSI. 

The integration of these approaches provided new insights into the stratigraphic architecture 
and facies organization of the Balbuena III Sequence. LBP analysis highlighted cyclicity 
patterns and stratigraphic surfaces, supporting the recognition of elementary to medium-scale 
sequence boundaries. CNN workflows enabled the isolation of lithofacies as 3D geobodies 
within point clouds, directly linking facies distribution to depositional geometries. 
Hyperspectral imaging, though limited in spectral range, successfully discriminated lithological 
groups and produced consistent facies maps. Together, these results underscore the potential of 
digital methods to strengthen the HRSS approach by providing scalable, reproducible, and 
quantitative parameters for reservoir analog studies in lacustrine systems. They also 
demonstrate the ability of machine learning techniques to reduce the manual workload of 
specialized tasks. 

By integrating traditional field and laboratory methods such as stratigraphic logging, 
petrography, geochemistry, and geochronology with digital approaches such as DOMs, LBP, 
CNN, and HSI, the workflows developed for La Barre du Cengle and the Salta Basin, anchored 
in a high-resolution stratigraphic framework, demonstrate how complementary strategies can 
refine the understanding of sedimentary processes and facies organization in lacustrine–
palustrine systems. Beyond their local significance, these approaches provide predictive 
insights and transferable methodologies that can be applied to other basins with similar 
depositional settings, strengthening their role as reservoir analogs. While primarily developed 
in the context of petroleum systems, with appropriate adaptations these workflows are also 
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applicable to aquifer studies and carbon capture and storage (CCS), where limited subsurface 
data make reservoir analogs key elements for reducing uncertainty. 

 
Fig. 7.2. Digital techniques applied to the Balbuena III Sequence (Salta Basin), with DOMs as the central 

framework to highlight stratigraphic and facies products, integrated with photogrammetry, LBP, 
CNN, and HIS. 

7.1.2. Stratigraphic Models: Barre du Cengle versus Salta Basin 
The stratigraphic models developed for La Barre du Cengle and the Salta Basin reveal 

contrasting architectures that reflect their dominant depositional domains. At La Barre du 
Cengle, the low-frequency framework corresponds to the entire carbonate bar that forms the 
cliff. This body extends for about 7 km in length and 2 km in width, although exposures are 
restricted to the southern margin. Thickness decreases from nearly 35 m in the west to around 
20 m in the east. Medium-frequency architecture is expressed by four small-scale sequences 
(Cengle I to IV), each 6.5 to 11.5 m thick depending on whether the section lies in a more 
lacustrine, palustrine, or pedogenic domain. These sequences are bounded by maximum 
retraction surfaces (MRS) formed during long-term subaerial exposure, and their correlation 
can be traced along the entire 7 km-long cliff with the support of the photogrammetric DOM. 
High-frequency architecture is defined by three main types of elementary sequences, increasing 
to five if the long-term overprint of pedogenesis is considered. They are mostly regressive (R) 
type, with transgressive–regressive (T – R) sequences occurring more commonly in the western 
part of the cliff. Their thickness ranges from 0.5 to 1.5 m, and their lateral correlation potential 
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is limited to a few hundred meters. This restriction results from the overall low facies contrast 
of this muddy carbonate, low-energy deposit, which hampers high-resolution correlation. It is 
further accentuated by amalgamation and pedogenetic overprinting, including that associated 
with very high-frequency base-level variations responsible for the development of palustrine 
facies. The effect becomes more pronounced toward the east, where palustrine and pedogenic 
facies dominate due to the stronger influence of both short- and long-term subaerial exposures. 

In contrast, the SBIII in the Salta Basin records a more continuous lacustrine succession, 
with stratigraphic organization well preserved at multiple frequencies. At low frequency, SBIII 
corresponds to a succession averaging 30 m in thickness, with minor variations from 25 to 30 m 
related to paleotopographic relief, such as local structural highs within the basin floor. This 
interval records the transition from an open-lake setting with dominant siliciclastic facies at the 
base to a closed-lake system with dominant carbonate facies at the top. Medium-frequency 
architecture is represented by four small-scale sequences, two in the siliciclastic interval and 
two in the carbonate part, with thicknesses of 6 to 9 m. Although the studied outcrops are 
discontinuous and correspond to isolated exposures, these sequences were correlated across all 
sections using key stratigraphic markers for reference. At high frequency, fifteen elementary 
sequences were identified, consisting of two recurring types: the Siliciclastic-dominated 
Elementary Sequence in the basal interval and the Carbonate-dominated Elementary Sequence 
at the top. They are predominantly transgressive–regressive (T – R) type, although regressive 
(R) ones also occur in the upper part. These elementary sequences can be correlated across the 
studied outcrops and traced for distances of about 45 km, which would correspond to nearly 70 
km in the depositional context once Andean shortening is restored. Their strong correlation 
potential reflects both the clear facies contrasts and the dominantly lacustrine character of the 
succession. Subaerial exposure surfaces marked by shrinkage cracks occur at the top of some 
sequences but are superficial, rarely extending beyond a few centimeters, indicating that 
exposure events were relatively short. 

The comparison between the two stratigraphic models of La Barre du Cengle and the Salta 
Basin (Fig. 7.3) can be understood through the accordion effect analogy proposed by Fragoso 
et al. (2021). In this framework, accommodation (A) is defined as the measurable thickness of 
space, at a specific location and time, that becomes filled with sediments during a given interval. 
This definition, introduced by Muto and Steel (2000), emphasizes its objective, rate-based 
nature and represents a refinement of earlier concepts, such as Jervey’s definition (Jervey, 1988) 
of space below base level. In parallel, sediment supply (S) refers to the input of particles and 
solutes into the basin, derived from extrabasinal sources such as tectonic and climatic controls, 
or from intrabasinal processes including chemical, biochemical, and biogenic production 
(Reading and Levell, 1996; Fragoso et al., 2021). Thus, the preserved stratigraphic record 
reflects the balance between accommodation (A) and sediment supply (S), with variations in 
the A/S ratio directly controlling stacking patterns, preservation potential, and the resolution of 
stratigraphic analysis. However, it is important to note that the stratigraphic record corresponds 
to only a fraction of total geological time, with significant gaps where no deposition occurred 
or where previously deposited sediments were eroded (Barrell, 1917; Catuneanu, 2019; Fragoso 
et al., 2021).
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Fig. 7.3. Accordion effect analogy (A), adapted from Fragoso et al. (2021), applied to the stratigraphic models of the Balbuena III Sequence in the Salta Basin, Argentina 

(B) and La Barre du Cengle in the Arc Basin, France (C).
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In the hypothetical scenario illustrated in Fig. 7.3A, the same stratigraphic time is 
represented along a transect showing the transition from lacustrine to palustrine and ultimately 
to pedogenic domains. For analogy, two positions are highlighted: a more distal lacustrine area 
and a more proximal palustrine position. Nine high-frequency sequences are represented in both 
schematic columns, yet their anatomy differs markedly. In distal conditions, sequences are 
thicker and display symmetric T–R stacking, whereas in proximal settings they become thinner, 
amalgamated, and develop asymmetric R-type patterns. Fig. 7.3B and Fig. 7.3C illustrate how 
the studied successions relate to this spectrum, with the Balbuena III Sequence in Salta 
exemplifying a distal lacustrine position and La Barre du Cengle representing a proximal 
palustrine domain. 

In distal areas, where accommodation rates are higher and positive, the “accordion folds” 
expand, favoring the preservation of high-frequency depositional sequences. Under these 
conditions, the available space allows a clear distinction between transgressive and regressive 
hemicycles, enhancing correlation potential. This is exemplified by the lacustrine succession of 
the SBIII in Salta (Fig. 7.3B), illustrated through the Assado section, selected as the 
representative type section of the SBIII. Both high- and medium-frequency sequences can be 
traced laterally for at least 45 km. Conversely, when A < S, corresponding to low positive 
accommodation rates, progradational stacking dominates and resolution is progressively lost. 
In this scenario, the same folds exist but appear amalgamated, making them harder to 
distinguish, as seen in the palustrine succession of La Barre du Cengle (Fig. 7.3C). The Pas du 
Lièvre section illustrates this setting, representing a typically palustrine succession, although 
pedogenetic facies occur at the top of some sequences and lacustrine facies are present in the 
upper part of the succession. In this context, the correlation potential for high-frequency 
sequences is limited to a few hundred meters (< 250 m), whereas medium-frequency sequences 
can still be traced along the entire cliff. In such cases, depositional sequences may be eroded 
by subaerial exposure or masked by pedogenetic overprinting, removing the evidence of short-
term fluctuations in the accommodation-to-sediment supply (A/S) ratio from the stratigraphic 
record. This process, known as signal shredding (Jerolmack and Paola, 2010), results in the 
creation of "missing beats" in the sedimentary record. 

From an analog perspective, the two models, SBIII in the Salta Basin and La Barre du Cengle 
in the Arc Basin, provide complementary insights: together, they demonstrate how stratigraphic 
organization, correlation potential, and preservation are fundamentally governed by the 
prevailing depositional domain, underscoring the importance of selecting appropriate analogs 
when applying stratigraphic models to reservoir-scale studies. 

7.1.3. Conceptual and Applied Perspectives on Outcrop Analogs 
As outlined in the Introduction and in Chapter 4 of this manuscript, outcrop analogs are 

widely used to support petroleum reservoir characterization and modeling (Grammer et al., 
2004; Hodgetts, 2013). By supplying mesoscale continuity typically absent from subsurface 
datasets, they elucidate facies distributions, depositional architectures, stacking trends, and 
internal reservoir heterogeneity. This is especially useful during the early phases of field 
development, when data availability is limited. Accordingly, outcrops provide a practical link 
between regional seismic interpretations and localized borehole observations (Pringle et al., 
2004; Jones et al., 2011; Howell et al., 2014; Yeste et al., 2021). The use of outcrops as reservoir 
analogs for different objectives and methods, whether aimed at characterization or modeling, is 
well documented in the literature. Examples span multiple depositional systems, including 
fluvio-deltaic (e.g., Henares et al., 2016; Colombera et al., 2017; Roisenberg et al., 2022; Islam 
et al., 2025), shallow-marine siliciclastic (e.g., Noad, 2004; Sech et al., 2009; Mulhern et al., 
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2019), deep-marine siliciclastic (e.g., Falivene et al., 2006; Mayall et al., 2006; Zhang and Li, 
2020), marine carbonates (e.g., Grammer et al., 2004; Adams et al., 2005; Amour et al., 2013; 
Borgomano et al., 2020), and lacustrine carbonates (e.g., Seard et al., 2013; Thompson et al., 
2015; Varejão et al., 2022; Mutti et al., 2023; Cupertino et al., 2024). Against this practical 
backdrop, the discussion that follows addresses the inherent limits of analogs and clarifies what 
is meaningfully transferable from outcrop to reservoir. These limits include representativeness, 
scale and continuity mismatches, diagenetic divergence, petrophysical dispersion, and seismic-
resolution pitfalls (Grammer et al., 2004), as well as the need for careful analog selection, 
multiscale data integration, and explicit uncertainty analysis supported by digital methods and 
standardized databases (Howell et al., 2014). 

No outcrop analog reproduces all characteristics of a subsurface reservoir. Even when the 
analog and the target belong to the same formation, differences are expected. The exposed 
portion has undergone telodiagenesis and other near-surface processes that did not affect the 
interval at depth. Fig. 7.4 illustrates this point with a playful poster created for the thirtieth 
anniversary of CEREGE, where a geologist appears as a “Ghostbuster” in search of the perfect 
analog. The underlying message is straightforward: “the perfect analog does not exist” (Howell 
et al., 2014), and the value lies in how we work this “imperfection”. 

 
Fig. 7.4. In search of the perfect analog. CEREGE 30th-anniversary poster depicting the author as a 

"Ghostbuster" geologist, underscoring that no perfect analog exists and that value lies in developing 
conceptual models, selecting portable elements, and combining multiple analogs. 
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In this context, scientists work with conceptual models in the broad sense, not mirrors of 
reality. One of the main risks in this process is the creation of a Frankenstein model (sensu 
Fragoso et al., 2021), an unrealistic composite produced by assembling fragmentary 
observations from disparate contexts. The value of a conceptual model lies less in its polished 
final version and more in the investigator’s logic and effort during construction. Geological 
sections, sets of genetically related outcrops, or even entire basins are not reproducible in a 
different spatial or temporal context. What can be transferred are the portable elements of the 
model, namely the constructive mechanisms and specific steps that can be applied, in part, to 
another geological reality. 

Operationally, analogs ground the abstractions that define a useful conceptual model of the 
reservoir, while direct parameterization and transfer from outcrops to reservoirs should proceed 
with care. Direct transposition of geostatistical metrics from a single outcrop is not 
recommended because each outcrop and reservoir is unique; the role of outcrops is to illuminate 
parameter variability and geological controls, which requires comparative use of multiple 
exposures and support from curated databases (Hodgetts, 2013). The reservoir team determines 
what is and is not transferable based on the specific similarities and differences between analog 
and reservoir. Portable elements typically include geometries of architectural elements to 
represent geobodies more faithfully and stacking pattern rules within comparable depositional 
contexts. 

Within the stratigraphic framework, HRSS enables zonation, improves correlation potential, 
and supports predictions of high-permeability zones, sealing intervals, and the distribution of 
heterogeneity at the metric scale (Grammer et al., 2004; Magalhães et al., 2020; Fragoso et al., 
2021). The definition of stratigraphic cyclicity across scales, derived from stacking, vertical 
alternations, and trends in facies associations, follows universal methodological criteria (e.g., 
Magalhães et al., 2020; Fragoso et al., 2021, 2022). In practice, stacking patterns delineate 
where permeability tends to increase (commonly near maximum regression or maximum 
retraction surfaces) and where it tends to decrease (commonly near maximum flooding or 
maximum expansion surfaces), and they highlight intervals where facies contrasts are most 
pronounced. In comparable depositional settings, coastal to nearshore facies generally show 
better reservoir quality than pelitic-dominated intervals; therefore, even when sequence 
boundaries are subtle or only weakly correlatable, this paleogeographic position can host more 
permeable geobodies, enhancing connectivity across successive units and increasing net pay 
(the thickness of reservoir rock meeting saturation, porosity, and permeability cutoffs such that 
hydrocarbons can flow). Its application to petroleum reservoirs (e.g., Liechoscki de Paula Faria 
et al., 2017; Melo et al., 2021; Fragoso et al., 2023; Vital et al., 2023; Pedrinha and Artagão, 
2024; Andrade et al., 2025) is typically supported by analogy with similar cases. 

Avoiding a Frankenstein model is a direct consequence of this mindset. Such constructions 
conflict with actualism and overlook the ephemeral and transformative nature of sedimentary 
environments. A more realistic approach incorporates high-frequency paleogeographic 
evolution, recognizes that both gaps and preserved records follow predictable stratigraphic 
patterns across timescales, and accepts the incompleteness and dynamism of the geological 
record. 

In this scenario, digital techniques and DOMs help unpack outcrop information with greater 
efficiency. DOMs enable quantitative, georeferenced analyses that can help populate 
geocellular reservoir models and support integrated outcrop workflows by combining classic 
field data with subsurface information to control heterogeneity more realistically (Yeste et al., 
2021). Beyond enabling access to remote areas, they accelerate and standardize the derivation 
of parameters that support understanding, parameterization, and quantification. For reservoir 
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modeling, object-based approaches and multipoint statistics can be used together to capture 
geobody shapes, heterogeneities, and nonstationary trends at the reservoir scale, including 
azimuthal tendencies where appropriate (Yeste et al., 2021). 

Along a given stratigraphic section, it becomes feasible to document stacking patterns and 
key surfaces, delineate facies tracts, parameterize architectural elements, and track 
mineralogical and diagenetic variations across beds of differing thicknesses and frequencies. 
The strategy of integrating data from different databases and different datasets complements 
single outcrop data acquisition. This provides a robust path to parameter ranges rather than 
single-value transpositions (Hodgetts, 2013; Howell et al., 2014). As such, information and data 
from DOMs are becoming increasingly essential in predictive workflows that support 
exploration and development decisions in reservoir management. 

7.1.4. Pre-salt Reservoirs: Challenges and Insights from Outcrop Analogs 
Although an overview of the Pre-salt was already presented in Section 4.7.2 in the context 

of the Salta Basin as a stratigraphic analog, it is important to revisit here the main characteristics 
of these reservoirs. The goal is to emphasize their significance, outline the challenges associated 
with their characterization and modeling, and underscore the relevance of using multiple 
outcrop analogs, since no single analog can be considered perfect (Section 7.1.3). 

The term Pre-salt refers to sedimentary and igneous deposits underlying a thick Aptian 
evaporitic sequence offshore the Santos and Campos basins, along the southeastern and eastern 
Brazilian margins. These reservoirs extend from Espírito Santo to Santa Catarina states (Fig. 
7.5A), in water depths of 1,500 to 3,000 m and burial depths of 3,000 to 4,000 m (Bueno de 
Moraes et al., 2024). They include rocks deposited during the rift and sag phases of these basins, 
later overlain by an extensive evaporite layer and followed by marine passive margin deposits 
related to the opening of the South Atlantic Ocean (Fig. 7.5B). 

Exploratory activities in Pre-salt began in 2005 with the Parati and in 2006 with Tupi 
prospects. Parati was key in demonstrating that the multilayered seismic reflector corresponded 
to a thick stratified salt layer and confirmed the presence of hydrocarbons in the Pre-salt area, 
although the result was not considered economic. In contrast, the Tupi prospect marked the first 
commercial Pre-salt discovery in the Barra Velha Formation (Santos Basin), with the 
declaration of commerciality of Tupi field in 2010. Tupi became Brazil’s first supergiant field, 
with 19.4 billion barrels of oil and 695 billion cubic meters of gas in place (Bueno de Moraes 
et al., 2024; De Paula et al., 2024). This success initiated a new exploratory phase, driven by 
the high quality of the oil (27-30 °API) hosted by the Pre-salt reservoir (Bruhn et al., 2017). It 
led to multiple discoveries between 2007 and 2014, including the Iara complex (Berbigão, 
Sururu, and Atapu fields), as well as Carcará, Sapinhoá, Itapu, Sépia, Mero, and Búzios fields 
(De Paula et al., 2024). Among these, Búzios, discovered in 2010, stands out as the largest 
commercial oil discovery in ultra-deep waters worldwide, with 29 billion barrels of oil and 816 
billion cubic meters of gas in place (De Paula et al., 2024; Guerrero et al., 2024). This 
accumulation also highlighted the presence of rift-related reservoirs, such as bivalve coquina-
rich deposits of the Itapema Formation in the Santos Basin. Correlations with equivalent 
intervals in the ultra-deepwater areas of the Campos Basin revealed additional reservoirs in the 
Coqueiros (rift) and Macabu (sag) formations (De Paula et al., 2024). 

Beyond their great areal extent, thickness, and depth, Pre-salt reservoirs pose additional 
challenges due to their stratified architectures and atypical carbonate facies, such as spherulites 
interbedded with magnesian clays (Fig. 7.5C–D) and fascicular calcite shrubs (Fig. 7.5E–F). 
These facies are frequently reworked or resedimented (Fig. 7.5G–H) and exhibit strong 
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heterogeneity due to diagenetic processes, including dolomitization, silicification, dissolution, 
recrystallization, and structural compartmentalization influenced by faults and fractures. The 
occurrence of such atypical facies complicates the search for ideal analogs and sustains the 
ongoing debate on the origin of Pre-salt rocks. 

 
Fig. 7.5. Overview of Pre-salt reservoirs. (A) Location of the Pre-salt area in the Santos and Campos 

basins, southeastern Brazil, modified from Fragoso et al. (2023) and Bueno de Moraes et al. (2024). 
(B) Schematic block diagram illustrating the general stratigraphic architecture of the basins, 
including rift, transitional, and post-salt stages, adapted from Fragoso et al. (2023). (C–H) 
Petrographic thin-section images of Pre-salt lithotypes from De Ros and Oliveira (2023), showing 
representative textural and compositional features: (C) calcite spherulites replacing and displacing 
the Mg-silicate matrix; (D) porous spherulitic rock; (E) transitional forms between fascicular shrubs 
and spherulites; (F) fascicular calcite aggregates with growth-framework (inter-aggregate) porosity; 
(G) calcirudite of fascicular and microcrystalline intraclasts; (H) porous calcarenite of fascicular and 
spherulitic intraclasts. Photomicrographs C, G, and H under plane-polarized light; A, D, and E under 
cross-polarized light. 
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In 2010, Petrobras (Terra et al., 2010) released the first public images of these facies and 
attempted to establish a classification adapted to the lithotypes encountered. While consensus 
now exists that Pre-salt lithotypes formed in highly alkaline lacustrine environments, their 
origin remains debated, whether biotic, abiotic, or mixed. Early studies emphasized microbial 
processes and extensively used the term stromatolite or microbialite to describe the main 
reservoir rocks (e.g., Carminatti et al., 2008, 2009; Nakano et al., 2009; Terra et al., 2010). More 
recent works, however, argue that this term is inadequate, leading to efforts to establish new 
classifications specifically suited to Pre-salt lithotypes (e.g., Wright and Barnett, 2017, 2020; 
Gomes et al., 2020; Borghi et al., 2022; De Ros and Oliveira, 2023). Although different 
terminologies have been proposed, the terms shrubstone and spherulstone (also referred to as 
spherulitestone) have become increasingly common since 2020, reflecting a growing body of 
research on these reservoirs. 

The abiotic model was first advanced by Wright and Barnett (2015), suggesting that 
evaporation and chemical precipitation controlled by lake geochemistry were the main 
processes responsible for Pre-salt formation. This interpretation has been supported by several 
authors (e.g., Wright and Tosca, 2016; Herlinger et al., 2017; Lima and De Ros, 2019; Carramal 
et al., 2022; Netto et al., 2022; Wright, 2022; Rossoni et al., 2024), who acknowledge, however, 
that microbialites may occur locally with only minor microbial influence. Others emphasize 
that biotic processes were fundamental for the development of in situ lithofacies (e.g., Muniz 
and Bosence, 2015; Tonietto et al., 2023; Gomes et al., 2024). Additional studies highlight 
hydrothermal influence, particularly in the Iara complex (e.g., Vital et al., 2023; Terra et al., 
2023) and in fault-related areas of the Campos (e.g., Lima and De Ros, 2019; Strugale et al., 
2024) and Santos (e.g., Tanaka et al., 2018) basins, associated with significant diagenetic 
transformations. 

The diversity of interpretations underscores the difficulty of finding a truly compatible 
analog for the Pre-salt, since both depositional conditions and scale may be unique. The closest 
lithological analogs are in the Kwanza Basin, offshore Angola (e.g., Saller et al., 2016; Poros 
et al., 2017; Teboul et al., 2017, 2019), which represent the African counterpart of the Pre-salt, 
formed prior to the separation of South America and Africa. As both successions originated 
from the same depositional system, they share not only similarities but also the same challenges. 

Recognizing these difficulties, this thesis did not aim to identify depositional analogs for 
Pre-salt lithofacies but instead focused on stratigraphic analogs that can improve understanding 
of vertical and lateral organization. Several studies have shown that variations in base level 
driven by climate controls provide a robust framework for interpreting stratigraphic stacking 
patterns in the Pre-salt (e.g., Muniz and Bosence, 2015; Fragoso et al., 2023; Tonietto et al., 
2023; Guerrero et al., 2024; Pedrinha and Artagão, 2024). These concepts have been 
successfully applied in forward modeling (e.g., Liechoscki de Paula Faria et al., 2017; Pozzi et 
al., 2024) and reactive transport modeling (e.g., Carvalho et al., 2024), producing architectures 
consistent with those observed in hydrocarbon fields. 

Because Pre-salt deposits are lacustrine, with base-level variations controlled by climate and 
extending for tens of kilometers, the Yacoraite Formation of the Salta Basin provides an 
excellent stratigraphic analog. At the same time, palustrine features such as breccias, 
pseudomicrokarsts, and shrinkage cracks described by Muniz and Bosence (2015) in Pre-salt 
reservoirs of the Campos Basin highlight parallels with the Barre du Cengle, where palustrine 
conditions dominate. Additional similarities include charophyte gyrogonites reported by 
Azerêdo et al. (2021) in the Pre-salt of Santos Basin, interpreted as evidence of a shallow, low-
gradient, alkaline, and variably saline lake, again comparable to Cengle deposits. 
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These elements demonstrate that both Salta and Cengle, as described in detail in Section 
7.1.2, provide valuable stratigraphic analogs for the Pre-salt, contributing to conceptual 
reservoir models and guiding strategies for characterization and modeling. While not direct 
lithological matches, they offer complementary insights: Salta reflects large-scale lacustrine 
organization, whereas Cengle represents more palustrine conditions. As highlighted in Section 
4.7.2, studies such as Fragoso et al. (2023) and Pedrinha and Artagão (2024) indicate that 
medium-frequency sequences are most consistent with production data. In both Salta and 
Cengle, these sequences can be correlated across distances exceeding typical Pre-salt well 
spacing (about 2 km), supporting the delineation of stratigraphic surfaces for zonation and the 
identification of architectures that control compartmentalization and fluid flow. 

7.2. Conclusions and Perspectives 
This thesis aimed to contribute to the generation and extraction of quantitative geological 

data from outcrops to support reservoir characterization and modeling in carbonate-dominated 
lacustrine settings, with emphasis on analogs relevant to the Brazilian Pre-salt. The central 
research question was whether outcrop-derived methods could enhance the extraction of 
stratigraphic elements and the detection of geological bodies. The results demonstrate that this 
objective was achieved: the integrated use of multiscale and multidisciplinary approaches, 
combining field data, laboratory analyses, and advanced digital techniques, significantly 
improved the identification, organization, and quantification of sedimentological and 
stratigraphic elements in both lacustrine and palustrine contexts. These advances provide a 
robust basis for generating conceptual reservoir models and extracting quantitative parameters 
that, with appropriate precautions, hold substantial value for reservoir characterization and 
modeling workflows. 

To further consolidate the contributions of this thesis, the following section revisits the 
specific objectives defined in Chapter 1 (Section 1.2). Each objective is examined considering 
the results obtained, highlighting how it was addressed throughout the different chapters and 
whether it was successfully achieved. This step ensures a direct connection between the 
research questions posed at the outset and the outcomes delivered. 

 
1. To acquire high-resolution field data and generate Digital Outcrop Models (DOMs) 

from key lacustrine and palustrine carbonate outcrops. 

In both study areas, high-resolution DOMs were successfully generated, providing the 
essential digital foundation for subsequent analyses. At La Barre du Cengle, a photogrammetric 
DOM covering the entire exposed portion of the cliff was produced at a resolution of 
approximately 2 cm/pixel, enabling the correlation of medium-frequency sequences along the 
whole escarpment. In addition, higher-resolution DOMs (~0.5 cm/pixel) were created at three 
of the four logged sections, ensuring precise positioning of stratigraphic logs and collected 
samples within the digital framework. In the Salta Basin, ultra–high-resolution DOMs (~2 
mm/pixel) were generated for the Assado and Vapumas outcrops, which provide the best 
exposures of the Balbuena III Sequence in the study area. These models served as the basis for 
detailed facies mapping and 3D classification experiments within a high-resolution 
stratigraphic framework built from fourteen outcrops. 

Despite the logistical complexities inherent to this workflow, such as field preparation, 
obtaining airspace and access permits, transporting equipment, and maintaining power supply 
for extended operations, the acquisition of RPAS-based photogrammetric data proved to be a 
relatively cost-effective and time-efficient method. Its long-term benefits are reinforced by the 
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availability of high-resolution models that can be revisited indefinitely, extending outcrop 
analysis beyond the field into the laboratory and enabling continuous refinement of data 
acquisition and interpretation. 

 
2. To integrate DOM-based analyses with traditional geological observations from the 

field and laboratory, ensuring consistent geological interpretation. 

The entire workflow developed in this thesis was conceived as an integrative and 
multidisciplinary effort, where diverse datasets were assembled like pieces of a puzzle to 
construct sedimentological and stratigraphic models anchored in HRSS. At La Barre du Cengle, 
eight lithofacies were grouped into three facies associations based on the integration of field 
logs and petrographic thin sections. These interpretations were further constrained by isotopic 
and U–Pb geochronology, refining the chronological and environmental framework of this 
predominantly palustrine system. In the Salta Basin, the case study focused on a lacustrine 
setting, where fieldwork and petrography supported the definition of 19 lithofacies grouped into 
four facies associations. These observations, when integrated with laboratory analyses, 
including geochemistry and spectroscopy, together with digital techniques, anchored digital 
interpretations and supported sedimentological and stratigraphic correlations. This systematic 
integration ensured that digital outputs such as DOMs, CNN, and HSI, remained geologically 
grounded and strengthened the understanding of depositional systems and their evolutionary 
trajectories. 

 
3. To establish correlation patterns and distances between lacustrine and 

lacustrine/palustrine settings across different study areas. 

In Salta, the dominance of a lacustrine setting enabled high- and medium-frequency 
sequences to be correlated over distances of more than 45 km, corresponding to a restored 
depositional length of nearly 70 km. At Cengle, correlation potential was shorter (<250 m for 
high-frequency, cliff-scale for medium-frequency), reflecting the limited accommodation space 
and the predominance of palustrine conditions. The juxtaposition of both sites highlights 
complementary positions along the accommodation/supply spectrum: distal lacustrine (Salta) 
versus proximal palustrine (Cengle). Importantly, in both settings, medium-frequency 
sequences extend well beyond typical Pre-salt well spacing (~2 km), directly supporting their 
use in reservoir zonation and in understanding heterogeneities that impact fluid flow. 

 
  4. To apply and evaluate multiple methods (HRSS, LBP, CNN, HSI) for the 

classification and extraction of lithofacies and depositional sequences within an integrated 
stratigraphic framework. 

HRSS, a central method in this thesis, is more than just a methodology; it represents a 
predictive approach to reconstruct past depositional and preservation processes at high 
resolution. In this context, deposition is understood as a dynamic process, where each interval 
bounded by two stratigraphic surfaces represents a new paleogeographic scenario. 
Consequently, depositional systems should not be represented by a single 3D block but rather 
by a succession of scenarios that illustrate their evolution through time. HRSS integrates 
stacking patterns and stratigraphic surfaces into the interpretation of high-frequency 
sedimentary patterns, considering sedimentation, erosion, and depositional gaps. 

Within the stratigraphic framework established by HRSS, additional digital methods were 
applied to complement its interpretations and to test their potential for enhancing 
sedimentological and stratigraphic analysis. At La Barre du Cengle, HRSS highlighted 
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elementary- to medium-frequency cyclicity and exposure surfaces, supporting the development 
of a conceptual depositional model verified by vertical anatomies at multiple hierarchies and 
through lateral facies variations. In the Salta Basin, HRSS provided the framework for applying 
LBP to detect repetitive stacking patterns directly from DOM imagery of SBIII. CNNs 
classified 11 facies into labeled point clouds, enabling the extraction of 3D geobodies, while 
HSI, even under restricted 900–1700 nm coverage, discriminated three main facies groups and 
produced coherent 2D maps after lithotype regrouping. Together, these methods demonstrate 
that digital techniques can significantly enhance and complement classical sedimentology and 
stratigraphy, delivering quantitative and reproducible products that strengthen both facies 
analysis and stratigraphic interpretation. 

Regarding hyperspectral imagery, which can be very valuable in carbonate settings where 
color contrasts and compositional variations are generally imperceptible to the human eye, 
traditional DOMs, even with high spatial and geometric accuracy, do not provide sufficient 
spectral resolution to detect subtle lithological variations (Salehi et al., 2018), and several 
challenges remain. Hyperspectral cameras are still relatively scarce due to their high cost, and 
when available, they are not always optimized for carbonate mapping. This was the case in the 
Salta Basin, where the available camera operated within a restricted spectral range (900–1700 
nm), excluding key diagnostic absorption features for carbonates and many clay minerals. At 
La Barre du Cengle, hyperspectral data were also acquired with a broader range suitable for 
carbonate mapping (HySpex VS-620 sensor: 400–2500 nm); however, as the outcrop is a 
vertical cliff, the only feasible option was RPAS-based acquisition. This configuration 
introduced significant noise, and the geometric correction of the dataset is still in progress. 

These challenges illustrate the current limitations of hyperspectral imaging for geological 
applications. Ground-based systems, typically mounted on tripods (as used in the Salta Basin), 
are not suitable for cliffs or inaccessible outcrops (such as La Barre du Cengle), while RPAS-
based systems are primarily designed for scanning sub-horizontal topographies in nadir 
configuration (Kim et al., 2022). Although part of the acquired data could not be processed 
within this thesis, it remains available, and efforts are ongoing to complete its post-processing, 
with the aim of continuing the analysis of hyperspectral data on the studied outcrops in future 
work. 

 
5. To contribute to the geological knowledge of each study area by improving the 

understanding of depositional architecture and stratigraphic organization. 

The study of La Barre du Cengle advanced the understanding of vertical facies evolution 
and lateral variation in a palustrine-dominated system. U–Pb dating indicated an older 
depositional age (Danian–early Selandian) than previously assumed, suggesting a potential 
revision of the Arc Basin chronostratigraphic framework. In the Salta Basin, the Balbuena III 
Sequence was subdivided into sequences of different hierarchies, documenting a transition from 
siliciclastic- to carbonate-dominated lacustrine systems correlatable over tens of kilometers. 
These findings refine regional stratigraphic frameworks and strengthen analog-based 
interpretations. 

 
6. To contribute to the advancement of digital techniques applied to outcrop analogs, 

highlighting their potential for generating conceptual geological models to support 
reservoir characterization. 

This thesis demonstrates practical workflows for digital geoscience: DOM-guided HRSS, 
LBP-based cyclicity detection, CNN-based point cloud classification, and HSI-based facies 
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mapping. These methods, when integrated with field- and laboratory-based data, not only 
accelerate data extraction but also reveal heterogeneities not always easily visible in the field, 
thereby expanding geological knowledge and contributing to more realistic conceptual 
geological models. By bridging quantitative outcrop observations with subsurface challenges, 
these digital techniques enhance the transferability of analogs and help reduce uncertainties in 
complex Pre-salt reservoirs. 

Limitations and Future Directions 
Despite the positive results achieved by the workflow developed in this thesis, bridging 

classical sedimentology and stratigraphy with digital geoscience and providing reproducible 
methodologies that go beyond qualitative description, many challenges remain. These do not 
invalidate the results but instead highlight the need for careful calibration and integration with 
multiple data sources. 

Although DOMs have revolutionized field studies in geosciences, they generate large 
volumes of data that require significant storage capacity and high-performance computing 
resources. In addition, the absence of well-structured and consistently labeled ground-truth 
datasets remains a major limitation for training deep learning models. Generating interpreted 
and labeled data to serve as training sets for deep learning techniques is time-consuming and 
further complicated by the interpretative nature of geological data. 

Validation metrics also need to be improved. At present, there are no quantitative methods 
to assess the results of LBP applied to cyclicity. Similarly, CNN-based classifications still lack 
dedicated metrics capable of evaluating the reproduction of facies continuity, topological 
relationships, and stratigraphic positioning. The metrics used in image-based methods are 
mainly based on pixel-level accuracy, but other approaches should be developed to better adapt 
to geological purposes. Photogrammetry and HSI are also highly sensitive to acquisition 
conditions, requiring preprocessing steps. 

Not all of the methods applied here are suitable for every depositional context. The 
application of CNNs in the Salta Basin proved highly effective, but this approach cannot be 
easily transferred to deposits with more subtle lithofacies variations, such as La Barre du 
Cengle. In Cengle, lithofacies are mainly matrix-supported, making the visual definition of 
geological bodies more difficult and complicating the generation of labeled data to be used as 
ground truth. 

The hyperspectral acquisition at La Barre du Cengle, at the Pas du Lièvre outcrop (Fig. 7.6), 
aimed to collect hyperspectral imagery using the HySpex VS-620 sensor mounted on a Freefly 
Alta X platform (Fig. 7.6E), equipped with a Movi Pro gimbal. The objective was to capture 
high-resolution (1 cm/pixel) vertical imagery of the cliff, which presents a complex geometry 
combining planar, curved, and stepped surfaces. The acquisition was planned in UgCS 
(Universal Ground Control Software) using the Vertical Scan function, with flight lines 
programmed successively downward to cover the entire target. However, the need to rotate the 
camera by 90° in both tilt and roll to align the scan lines with the outcrop caused the loss of one 
gimbal axis, resulting in variable roll distortions in the images, classified as low, moderate, and 
high (Fig. 7.6A–C). A radiometric reference panel coated with barium sulfate (Fig. 7.6F) was 
installed on the cliff for radiometric calibration. 

Despite successful acquisition, geometric correction remains the main challenge. The first 
correction step using Trimble’s POSPac UAV, required to process GNSS (Global Navigation 
Satellite System) and IMU (Inertial Measurement Unit) data and generate the smoothed best 
estimate trajectory (SBET), could not be completed, preventing the final geometric correction 
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in the open-source Hylite toolbox (Thiele et al., 2022). At present, the research team is in contact 
with HySpex technical specialists, who have offered support for the post–POSPac UAV stage 
to facilitate completion of the geometric correction. 

 
Fig. 7.6. Hyperspectral acquisition at La Barre du Cengle (Pas du Lièvre outcrop). (A–C) Examples of 

hyperspectral images showing low, moderate, and high levels of image distortion, respectively. (D) 
Field team during data acquisition. (E) Freefly Alta X platform equipped with HySpex VS-620 
hyperspectral sensor and Movi Pro gimbal. (F) Radiometric reference panel coated with barium 
sulfate, installed on the cliff for radiometric calibration. 

Looking ahead, several research avenues emerge. In the short term in the Salta Basin, 
hyperspectral datasets should be expanded using sensors that cover the most suitable spectral 
ranges for characterizing clay minerals and carbonates, thereby improving lithofacies 
discrimination and highlighting variations not visible to the naked eye. At La Barre du Cengle, 
completing the geometric correction of the existing dataset will be a priority, after which 
hyperspectral imaging could also be used to emphasize different intensities of pedogenesis, 
supporting the reconstruction of sequence evolution and improving the understanding of the 
geological history of the area. More broadly, future research should focus on expanding training 
datasets across a wider variety of outcrops and acquisition conditions, integrating DOMs with 
full-range hyperspectral imagery and quantitative mineralogical datasets (e.g., XRD), and 
ultimately generating 3D hyperclouds that combine geometric and spectral data. 

Final Remark 
By uniting classical and digital approaches, this work demonstrated that outcrops can serve as 
both a memory of past environments and a laboratory for future reservoir models. 
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The Salta Basin, located in northwest Argentina, was associated with the breakup of Gondwana 
during the Cretaceous period. It is subdivided into four sub-basins (Lomas de Olmedo - east; 
Sey - west; Tres Cruces - north; and Metán-Alemania - south) that were filled with sediments 
from Pirgua (synrift phase) and Balbuena (sag phase) supersequences. The sag phase is divided 
into four sequences: Balbuena I, II, III, and IV, from bottom to top. This research presents an 
integrated approach combining traditional and digital methods to characterize the 
sedimentology and stratigraphy of the Balbuena III Sequence (Maastrichtian/Danian) of the 
Yacoraite Formation in the Metán-Alemania sub-basin, Cabra Corral dam region, Coronel 
Moldes district, Argentina. Field data, including samples for petrographic and sedimentological 
analyses, were collected from vertical stratigraphic profiles, along which gamma-ray spectral 
records were also acquired. Finally, digital models of three outcrops were generated using aerial 
photogrammetry obtained by an unmanned aerial vehicle (UAV). They served as support for 
automatic processing of their geometry (roughness) and texture to interpret the observed facies 
and cycles on different scales. In the studied outcrops, the Balbuena III Sequence ranges from 
28 to 33 m in thickness and consists of carbonate, siliciclastic, and mixed facies deposited in a 
lacustrine environment, whose climate was the main depositional controller. The carbonate 
facies include oolitic/bioclastic grainstones, oolitic/bioclastic packstones, bioclastic rudstones 
and floatstones, carbonate mudstones, laminites, and stromatolites. The siliciclastic facies 
comprise very fine wavy sandstones, siltstones, and siliciclastic mudstones. Mixed lithofacies 
deposition consist of hybrid sandstones and marls. The lithofacies have been grouped into four 
facies associations and two vertical successions of facies (elementary cycles). The observed 
cycles have been ranked into sequences of high, middle, and low frequencies and could be 
traced for tens of kilometres in the basin. These cycles have been also highlighted by numerical 
outcrop processing. First, the LBP (Local Binary Pattern) operator computed from the grey 
scale of the outcrop texture proved to be robust in identifying changes in lithofacies. Second, 
the fractal dimension was estimated from local variogram fitting and used as a tool for analysing 
the surface roughness. It allowed the identification of different lithological types, as they 
present distinct granulometries and responses to weathering. The combined analysis of field 
data and digital outcrop models makes it possible, in addition to understand the stratigraphic 
framework of the Basin, to map the cyclicity in areas of difficult or impossible access, such as 
cliffs and escarpments. 
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The Arc Basin, located in southeastern France, is an east-
west-oriented depression where marine, lagoon, fluvial, 
lacustrine, palustrine, and pedogenetic deposits were 
formed from Upper Cretaceous to the Middle Eocene [1]. 
Among the Early Paleogene deposits in this basin lies the 
cliff of the Cengle Plateau, locally known as "La Barre du 
Cengle." This cliff exposes carbonates dominated by 
palustrine deposits, which integrate the "Calcaire de Saint-
Marc" Formation [1, 2, 3]. 

The elliptical plateau of Cengle is situated 15 km east of 
Aix-en-Provence, France, extending 7 kilometers east-
west and 2 kilometers transversely. The thicknesses of its 
cliffs range from 20 to 35 meters. These cliffs are 
characterized by the occurrence of grayish, beige, and 
pinkish limestones deposited in a lacustrine/palustrine 
environment that has been constantly altered by 
pedogenesis [4]. 

An interdisciplinary approach, integrating petrography, 
photogrammetry, geochronology, SEM, and geochemical 
analyses, was employed to analyze lithofacies, stacking 
patterns, lateral facies variations, and interpret the 
environmental dynamics during the deposition of the 
carbonates of "La Barre du Cengle". 

Generating digital outcrop models through aerial 
photogrammetry not only enabled the mapping of surfaces 
subdividing the studied area into four stratigraphic 
intervals but also facilitated understanding of vertical and 
lateral facies variations along "La Barre du Cengle". 

The facies consist of densely compacted dark micritic 
mudstone and bioclastic wackestone/packstone with 
massive, brecciated, nodular, or granular textures. Facies 
analysis allowed the construction of an exposure index 
serving as a relative indicator of subaerial exposure time. 

Deposits of the Cengle Plateau cliff are organized into 
elementary sequences at decimeter to meter scales, which, 
in turn, accumulate into small-scale sequences at 
decameter orders. 

The sedimentary succession reflects the cyclical nature 
of the climatic variations that control the deposition. 

Subaerial exposures mirror variations in lake level at 
different frequencies. At least four base-level variation 
frequencies were identified: i) very high and seasonal 
frequency, generating very short-term subaerial exposures 
and transforming lacustrine facies into palustrine ones; ii) 
high frequency resulting in short-term subaerial exposures 

and generating surfaces that bound elementary sequences; 
iii) medium frequency leading to long-term subaerial 
exposures, resulting in the formation of pedogenic facies 
and features; and iv) low frequency corresponding to the 
deposition of the entire set of limestones forming the 
Cengle Plateau cliff. 

U-Pb data on carbonates revealed three age groups: i) 
64.3 ± 2.5 Ma (Danian to early Selandian), interpreted as 
the age of deposition of the Cengle limestones; ii) 56 ± 1.6 
Ma, characterized by a neomorphic phase; and iii) 43.07 ± 
3.87 Ma, represented by a late cementation phase. 

In the depositional context, the transition between 
lacustrine, palustrine, and pedogenic environments 
consistently occurs from west to east over time. In the 
more distal regions, the proportion of lacustrine facies 
tends to increase, and the thickness of preserved 
sedimentary record is greater. Conversely, in the closer 
areas, palustrine and pedogenic facies predominate, 
typically resulting in lesser thickness.  
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For several decades, Digital Outcrop Models (DOMs) have facilitated the geological study of outcrops, 
allowing detailed interpretations of sedimentary or tectonic structures. However, processing all this data 
still remains tedious despite the implementation of automatic detection techniques, such as recently 
developed neural networks. Moreover, when using these outcrops as reservoir analogues, the big question 
is what level of information to include in 3D models, especially since the studied outcrops are carbonate 
cliffs several kilometres long, for two reasons: i) carbonates are difficult to differentiate from a distance; ii) 
cliffs involve large amounts of data to process. On the one hand, large-scale analyses miss fine levels of 
facies that are crucial for flow or dating, and on the other hand, detailed analyses are time-consuming and 
provide information that is not easily integrated or useful in models. The present work aims to propose a 
multi-approach workflow to optimise the information extraction from outcrops for reservoir modelling. 

Figure 1: Case study: top) Location map of the Salta Basin and its sub-basins; bottom) photo of an outcrop near the 
Cabra Corral reservoir with the stratigraphic nomenclature of the units.  

The Balbuena III Sequence of the Salta Basin, Argentina, is a well-known basin analogue for Brazilian pre-
salt carbonate reservoirs (RAJA GABAGLIA et al., 2011). The lacustrine successions, observable at several 
outcrops, consist of carbonate, siliciclastic, mixed, and volcanic facies, arranged in stacking patterns that 
can be correlated over tens of kilometres, and are interpreted to reflect climatically driven base-level 
changes (Fig. 1). Outcrops are located in the southern part of the Salta Basin, close to the Cabra Corral 
reservoir. We have developed a multi-approach workflow (Fig. 2) to improve the understanding of 
depositional environments, facies architecture and cyclic stacking patterns within the Balbuena III Sequence 
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but also to extract quantitative key information for nourishing further 3D surbsurface reservoir models. It 
combines high-resolution sequence stratigraphy (HRSS), supported by traditional field-based methods, with 
digital techniques: texture (Local Binary Pattern, LBP) and roughness analyses (VISEUR et al., 2022), and 
Convolutional Neural Networks (CNNs) applied onto the photogrammetric data.   

Figure 2. Imbricated and multi-approach workflow for extracting essential information from data. 

The LBP and roughness analyses defined proxies for stratigraphic interpretation:  LBP seems more efficient 
in exhibiting high-frequency cycles and roughness analyses in highlighting medium-frequency stratigraphic 
sequences. A CNN-based segmentation combined with photogrammetric algorithms (GUADAGNIN et al., 
under review) provided facies maps directly on outcrops, allowing 11 lithofacies to be identified, including 
carbonate, siliciclastic, mixed, and volcanic facies. The combined numerical approaches allow for a more 
in-depth analysis by increasing efficiency, and thus capacity to analyse large datasets. Combining these 
techniques with traditional methods improves the analysis of outcrop analogues and thus contributes to a 
more adequate geological modelling of oil fields and hydrocarbon recovery. 
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The interpretation of sedimentary facies in outcrop analogues provides valuable insights for characterising 
subsurface reservoirs, particularly when integrated with high-resolution imaging and deep learning 
methods. This study aims to evaluate the application of Convolutional Neural Networks (CNNs), 
specifically a U-Net architecture, for pixel-wise lithofacies classification from photogrammetric images of 
two well-exposed outcrops, Assado and Vapumas, located in the Salta Basin (Argentina). This work relies 
on a workflow whose effectiveness has already been demonstrated in (Guadagnin et al., 2025; Roemers-
Oliveira et al., under review) and which combines acquisition of images, manual interpretation, CNN-based 
automatic labelling, and 3D lithofacies point cloud generation. 

A series of tests were conducted to evaluate the performance of this CNN-based workflow while trying to 
reduce the most time-consuming steps and minimise the reliance on expert manual labelling. The testing 
strategies included modifications to input image resolution, number of epochs, expansion of the training 
dataset, changes in the geological interpretation, and data augmentation. The limited reproducibility of the 
CNN algorithm was mitigated by fixing the seeds of the random number generators, enabling comparative 
analysis of performance metrics across the same set of training images under multiple test configurations. 

To apply the CNN algorithm, photo labelling was required. A small subset of the total image dataset (~500 
per outcrop) was manually interpreted by generating one image mask per facies within each photo (Fig. 1). 
The labelled dataset comprises 49 images for Assado and 31 for Vapumas, with lithofacies classes defined 
based on prior sedimentological and stratigraphic studies.  

Good results were achieved, with 83% overall accuracy for Assado using a training set comprising 10% of 
the full image dataset, and 84% for Vapumas using just 7% of the total dataset. 

As a result, optimal resolution and number of epochs versus running time have been determined in this 
work. Moreover, it was first demonstrated that a CNN model using a dataset with raw images combined 
with  brightness, contrast, and colour equalised across the entire training dataset enhances results without 
requiring new labelling.  This highlights the importance of the developed approaches, as manual 
interpretation is the most time-consuming expert task associated with the workflow presented in this study. 
Secondly, the facies classification may also have an impact on results. Facies can vary gradually, and it is 
not always easy to group hybrid facies into coherent sets. In this work, several facies association groupings 
were tested to determine which produced the most effective results, while being consistent with the reservoir 
application of this study. 

Finally, point clouds coloured by predicted lithofacies enabled the visualisation and parametrisation of 
geological bodies in 3D Digital Outcrop Models (DOMs), confirming the consistency of spatial patterns 
with known stratigraphy (Fig. 2). Figure 2 shows the first 3D facies mapping of the Vapumas outcrop. 

Despite positive results, challenges remain, including sensitivity to class imbalance.  Future works includes 
cross-outcrop model transfer, i.e., applying a CNN trained on one outcrop to another with similar facies.  
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Fig. 1. Example of mask export for CNN training. Each lithofacies present in the outcrop image is exported as a separate 
binary mask, corresponding to a specific label class used in the supervised learning workflow. 

Fig. 2. 3D point cloud generated for the Vapumas outcrop. Lithofacies were grouped and coloured in CloudCompare, 
using the same colour code applied in the CNN. The point cloud was also manually edited. 
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a b s t r a c t 

3D point clouds of outcrops are digital representations of rock exposures used for geological surveying. These 
datasets often have high spatial density, up to a thousand points per square meter. By integrating georeferenced 
data into the 3D point cloud and applying remote sensing interpretation techniques, geoscientists can extract 
geological features and build 3D models. However, interpreting 3D point clouds remains labor-intensive, non- 
reproducible, and prone to human bias. Convolutional neural networks have been applied to segment the images 
used to build the 3D models, based on a few labeled training and testing subsets, to reduce the amount of human 
labour. This work used a U-Net encoder-decoder network architecture to segment images of turbidite architectural 
elements in the La Jardinera Region, Neuquén Basin, Argentina. Approximately 10 % of the images were labeled 
by an expert interpreter, with half used for training and half for testing the model, yielding % overall accuracy 
of 82 %. The model was then retrained on the full labeled set and applied to the remaining unlabeled images. 
The final segmented outputs were processed through a photogrammetry pipeline to generate classified 3D point 
clouds, capturing the spatial distribution of architectural elements within the outcrop. 
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. Introduction 

The use of 3D point clouds of rock exposures (outcrops) for fa-
ies analysis is now standard in both academic and industry investi-
ations (e.g., Pringle et al., 2006 ; Keogh et al., 2014 ; Bilmes et al.,
019 ; Marques et al., 2020 ; Roisenberg et al., 2022 ; Gross et al., 2023 ;
amaruzaman et al., 2024 ). Facies analysis is central in any geological
urvey, as it defines a rock’s texture, composition, structure, and external
eometry (e.g., Catuneanu, 2022 ). Georeferenced 3D point clouds offer
ey advantages for a geological survey, as they provide 3D photoreal-
stic outcrop models with a high density of data, capturing up to thou-
ands of points per square meter, with a high-resolution representation
f outcrop surfaces. These models enable the integration of various types
f georeferenced datasets, such as compositional, mineralogical, petro-
raphic, structural, multi- and hyperspectral, geophysical, and petro-
hysical, across 1D, 2D, or 3D formats. Geological remote sensing tech-
iques are then used to extract digital objects (points, lines, surfaces, or
olumes) from the outcrop models, to which geological attributes can be
∗ Corresponding author. 
E-mail address: felipeguadagnin@unipampa.edu.br (F. Guadagnin) . 
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ssigned. Ultimately, all this information feeds into constructing 3D geo-
ogical models tailored to project-specific objectives (e.g., Howell et al.,
014 ; Burnham & Hodgetts, 2019 ). 

3D point clouds can be generated using LiDAR or photogrammetry
echniques, with data acquisition conducted via ground-based or aerial
urveys (e.g., Cawood et al., 2017 ). Photogrammetry is based on the
arallax effect —the apparent displacement of objects viewed from dif-
erent locations (e.g., Sherman & Craig, 2018 ) —and is often favored
ver LiDAR due to shorter processing time, lower equipment and com-
utational cost, and flexibility in spatial resolution. The latter depends
n camera specifications and the distance to the target. Photogramme-
ry products typically yield higher spatial resolution when using digi-
al single-lens reflex or mirrorless cameras (e.g., Carrivick et al., 2016 ;
awood et al., 2017 ; Diara & Roggero, 2022 ). 

Facies analysis has traditionally relied on manual classification by
uman interpreters —a time-consuming process that lacks error esti-
ation, reproducibility, and scalability (e.g., Pires de Lima et al.,
020 ; Falivene et al., 2022 ; Malik et al., 2022 ; Dawson et al., 2023 ).
 2025 
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Fig. 1. Workflow for generating classified 3D point clouds of outcrop for rock facies analysis. 
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Fig. 2. Examples of labeled images from the La Jardinera outcrop used in this 
study. Turbidite lobes-interlobes are shown in yellow, and fringe facies are 
marked in orange. 
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Fig. 3. U-net architecture, divided into the encoder and d

3

urthermore, the volume of data produced during a typical outcrop
urvey far exceeds what a human can realistically process. Despite
hese limitations, facies analysis of 3D point clouds is often performed
anually (e.g., Buckley et al., 2019 ; Horota et al., 2023 ). The in-

reasing availability of image classification techniques based on con-
olutional neural networks (CNNs) has led to a growing number of
pplications of these methods to geological problems across various
cales and settings. These approaches offer improved interpretation
ccuracy, greater scalability, and reduced subjectivity and interpre-
ation time. CNNs learn to recognize patterns of RGB color, edges,
nd texture by segmenting images according to their characteristic
eatures. For example, Cheng and Guo (2017) analyzed rock granu-
arity, Koeshidayatullah et al. (2020) , Liu and Song (2020) , Pires de
ima et al. (2020) , Pires de Lima and Duarte (2021) , Xu et al. (2022) ,
awson et al. (2023) , and Liu et al. (2023) classified rock specimens

n thin-section images; Souza et al. (2020) enhanced hydrocarbon lead
apping in seismic images; Falivene et al. (2022) identified common

ithofacies using core images; and Malik et al. (2022) segmented sand-
tone from mudstone classes using outcrop images. 

Image segmentation using CNNs is a supervised deep learning tech-
ique in which human interpreters label a portion of the dataset. These
abeled images are used to train a CNN model, which minimizes dis-
repancies between predicted and true labels with the training set (e.g.,
awson et al., 2023 ). Once trained with high accuracy (i.e., the frac-

ion of correct predictions), the model can be applied to segment the
emaining unlabeled dataset. The segmented images can then be pro-
essed through the photogrammetry pipeline to generate the 3D classi-
ed point clouds. Similar procedures have been used in fields like build-

ng façades classification in complex urban settings (e.g., Lotte et al.,
018 ; Bacharidis et al., 2020 ) and coral reefs mapping and classifica-
ion (e.g., Hopkinson et al., 2020 ; Yuval et al., 2021 ; Sauder et al., 2023 ;
arlow et al., 2024 ). 

This work presents a workflow for generating 3D point clouds clas-
ified by facies from outcrop images using CNN-based image segmen-
ation combined with photogrammetry. The main objective is to re-
uce human bias in the interpretation process while enhancing repro-
ucibility and efficiency. The workflow is applied to a case study at
he La Jardinera outcrop in the Neuquén Basin, Argentina, an inter-
ationally recognized exposure of a turbidite depositional system. The
ecoder components (e.g., Ronneberger et al., 2015 ). 
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Fig. 4. Location of the survey area at the La Jardinera outcrop. (a) Regional geographic context, with the red polygon showing the map’s extent in (b). (b) Map 
showing the Neuquén Basin limits (adapted from Howell et al., 2005 ) and isopachs ( Cordani et al., 2016 ) over a digital elevation model (SRTM 90 m), indicating 
the La Jardinera outcrop location. (c) Detailed view of the survey area over a Google satellite image. The central coordinates of the survey area are 39.387705° W 

latitude and 70.731289° S longitude (WGS 84 datum). 
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esults demonstrate high accuracy in classifying two different archi-
ectural elements within the system. The code used in the case study
s available on GitHub ( https://github.com/italo-goncalves/unet_tools ),
nd the dataset is available upon request. 

. Workflow 

The workflow for generating a classified 3D point cloud of outcrops
or rock facies consists of four main steps: (i) image labeling by an expert
nterpreter, (ii) CNN model training and testing, (iii) image segmenta-
ion, and (iv) construction of the classified 3D point clouds ( Fig. 1 ). 
4

.1. Image labeling by an expert interpreter 

To train the CNN model, a portion of the outcrop images must first be
abeled for use in training and testing. Labeling involves an expert inter-
reter classifying image sections by facies or facies associations ( Fig. 2 ).
t can be done manually or with tools such as a polygonal lasso, magic
and, paint bucket, mask manager, available in open-source and com-
ercial software like GIMP or Adobe Photoshop. Features in the images

hat do not represent outcrop rock, such as sky, vegetation, loose sed-
ments, and human-made objects, are not labeled. Image segmentation
utomatically assigns these features to the “other ” category. 

https://github.com/italo-goncalves/unet_tools


F. Guadagnin, Í.G. Gonçalves, E. Roemers-Oliveira et al. Geodata and AI 4 (2025) 100024

Fig. 5. Measured facies and facies associations log ( Gonçalves et al., 2022 ) tied to the orthophoto mosaic of the La Jardinera outcrop in an east-west-oriented vertical 
section (a). Panels (b) and (c) show detailed view of the section. Facies code FA1 corresponds to fringe, and FA2 to lobe–interlobe deposits. 
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.2. Training and testing a CNN model 

Since the workflow aims to label only images available at training
ime, it follows a transductive learning approach, rather than the more
ommon inductive learning, which aims to generalize to unseen data
oints. With this in mind, the number of labeled images required to
chieve sufficient accuracy must be carefully assessed. A balance be-
ween model accuracy and the manual labor required must be found. A
mall fraction of the images (typically around 5 %) is labeled as a start-
ng point. The labeled dataset is split into training and testing subsets,
ith a small proportion of training data. The CNN model is trained on

he training subset, and its accuracy is evaluated on the testing subset.
he train/test split is repeated 20 times to obtain a range of accuracy
alues to ensure robust results. Additional labeled images are progres-
ively added to the training set, which is repeated until the test accuracy
tabilizes. 
5

.3. Image segmentation 

Before running the segmentation model, the following pre-
rocessing steps are applied to speed up and optimize the process: 

- Image resolution reduction to 256 × 384 pixels. 
- Data Augmentation ( Shorten & Khoshgoftaar, 2019 ), which encom-

passes techniques that increase the size of training data sets, such as
mirroring and transposing the images. 

The CNN architecture employed in this work is the U-net
 Ronneberger et al., 2015 ), initially developed for segmentation and
attern recognition in biomedical slide data. U-net consists of the en-
oder and the decoder ( Fig. 3 ). The encoder progressively applies con-
olutional layers to extract low-level features, followed by an activa-
ion function that introduces non-linearity to the system. Subsequently,
he image size is halved using a max pooling function, and the process
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Fig. 6. 69 randomly selected labeled images as lobe-interlobe (yellow) and fringe (orange). 

Table 1 
Validation results for a 50/50 train/test split. 

Precision Recall F1-score 

Lobe-interlobe 0.71 0.71 0.71 
Fringe 0.70 0.65 0.68 
Other 0.88 0.89 0.88 
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Fig. 7. Test accuracy as a function of dataset size. 
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ontinues to the next convolutional level. The decoder reconstructs the
egmented image to its original size, incorporating feature information
xtracted in the previous step. This is accomplished through transposed
onvolutional layers (up-convolutions) and concatenation with the cor-
esponding features in the contraction path. 

In this work, the U-net contains two convolutional layers with 32
hannels. Four max-pooling operations are performed, and after each,
he data passes through another two convolutional layers with twice the
umber of channels. The decoder mirrors this process, concatenating
ach encoder tensor with the corresponding decoded tensor after the
p-convolution step. The ReLU activation is used in all layers except the
nal one, which employs the softmax activation ( Fig. 3 ). 

The predictions’ entropy is used to visually assess model uncer-
ainty, particularly for unlabeled images. Entropy quantifies the average
evel of uncertainty associated with a variable’s potential states (e.g.,
hannon, 1948 ). Given the model’s output as a probability distribution
 over each pixel’s facies or association label, obtained with the softmax
ctivation, the entropy is computed as: 

 = − 𝑝 ∗ [ 𝐿𝑜𝑔 𝑝 ] 

The entropy will be low when the model assigns a high probabil-
ty to a specific facies, indicating high confidence in its prediction. In
ontrast, the entropy will be high when the model assigns similar prob-
bilities across two or more facies, reflecting greater uncertainty in the
rediction. 

.4. Building the classified 3D point clouds 

The Structure-from-Motion–Multi-view Stereo (SfM-MVS) pipeline
enerates the classified 3D point clouds. In this workflow, the entire
ataset is first used to align all images, after which each segmented sub-
et is processed to create individual classified 3D point clouds. 
6

The alignment procedure is the first step of the SfM-MVS pipeline
e.g., Westoby et al., 2012 ; Carrivick et al., 2016 ; Toffanin, 2023 ). It in-
olves several key algorithms for: (a) feature detection in individual im-
ges (e.g., Scale-Invariant Feature Transform; Lowe, 2004 ), (b) features
atching across different images (e.g., Approximate Nearest Neighbor;

owe, 2004 ), (c) elimination of geometrically inconsistent correspon-
ences (e.g., Random Sample Consensus; Fischler & Bolles, 1981 ), and
d) Bundle Adjustment to refine the 3D scene geometry, calculate image
ositions and orientations, and solve internal camera parameters (e.g.,
avani et al., 2024 ). This process can be performed using commercial
r open-source software, or through libraries available for Python or
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Fig. 8. Example of the model´s prediction (‘b’ and ‘e’) for lobe-interlobe (in yellow) and fringe (in orange) over two originally unlabeled images (‘a’ and ‘d’), along 
with the corresponding entropy map (‘c’ and ‘f’). 

Fig. 9. Oblique perspective view of the 3D point clouds of the La Jardinera 
outcrop. (a) RGB-colored 3D point cloud of the entire dataset, with the area de- 
tailed in Fig. 10 highlighted. (b) Classified points showing lobe–interlobe (yel- 
low), fringe (orange), and unclassified points (gray). (c) Lobe–interlobe points 
only. (d) Fringe points only. (e) Combined lobe–interlobe and fringe points. 
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ther languages, such as OpenSfM. It is important to note that differ-
nt software or code may apply different strategies for the alignment
rocedure. 

Building the 3D point clouds is the second stage of the SfM-MVS
ipeline. Multi-view stereo (MVS) algorithms increase the point cloud
ensity obtained from the alignment procedure (e.g., Furukawa &
ernández, 2015 ). MVS method can be based on voxel, surface evo-

ution, depth map merging, or patch methods (e.g., Tavani et al., 2024 ).
he MVS procedure is run separately for each segmented subset in this
orkflow. The segmented images are used as masks, ensuring the MVS
lgorithm densifies the point cloud only within the segmented areas.
his produces a distinct 3D point cloud for each subgroup. The steps
7

nclude: (i) import and align all images; (ii) duplicate the processing
roup; (iii) import the segmented images as masks into the correspond-
ng processing group; and (iv) run the MVS separately on each process-
ng group. 

. Case study - La Jardinera outcrop 

The dataset used in this work was acquired from the La Jardinera
utcrop, covering a survey area of approximately 32,350 m2 ( Fig. 4 ).
t consists of 721 images captured using a DJI Remotely Piloted Aerial
ystem model Phantom 4 Pro, equipped with a 1 ″ CMOS sensor that
roduces georeferenced images at a resolution of 5.472 × 3.648-pixel
20-megapixel). 

The La Jardinera outcrop exposes sedimentary rocks deposited in
pper and Middle Jurassic in turbidite systems, formed in slope-rise
nd basin-plain settings ( Paim et al., 2008 ; Giacomone et al., 2020 ;
lariu et al., 2020 ; Gonçalves et al., 2022 ; Silveira et al., 2024 ).
hese strata belong to the Los Molles Formation of the Cuyo Group.
sing a sequence stratigraphy approach ( sensu Catuneanu, 2019 ),
onçalves et al. (2022) defined four 4th-order sequences mainly com-
osed of lobes, interlobes, and wide channels interlayered with fringe
ediments, which are distinguished by facies and facies associations (ar-
hitectural elements). 

In the studied interval, two architectural elements are visually dis-
inct: turbiditic lobes-interlobes and fringes ( Fig. 2 ; Paim et al., 2008 ;
onçalves et al., 2022 ). The lobes and interlobes consist of tabular beds
f medium- to fine-grained sandstones, either amalgamated or interlay-
red with thin beds of dark shales. In contrast, fringes are characterized
y dark and light grey shale beds with flat bases, interbedded with thin
abular beds of fine-grained sandstones and convoluted sandstones and
hale layers ( Gonçalves et al., 2022 ). 

The measured facies and facies associations log from
onçalves et al. (2022) was tied to the 3D point cloud built from

he entire dataset using the SfM-MVS pipeline. The tying process used
he Move software with a 2D section view. An orthophotomosaic was
onstructed from the 3D outcrop model, projected onto an east-west-
riented vertical plane. This orthophotomosaic was then imported into
ove as a georeferenced section. The facies and facies associations log
as also imported into the same section, then scaled and rotated to fit
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Fig. 10. Closer view of the 3D point clouds in the same oblique perspective as Fig. 9 . (a) RGB-colored 3D point cloud of the entire dataset, with the area detailed 
in Fig. 11 highlighted. (b) Classified and unclassified points. (c) Lobe–interlobe architectural elements shown as RGB-colored points. (d) Lobe–interlobe elements 
shown in yellow. (e, f) Fringe elements. (g, h) Combined lobe–interlobe and fringe points. 

8
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Fig. 11. Detailed view of the point clouds in the same oblique perspective as Figs. 9 and 10 . (a) RGB-colored 3D point cloud of the entire dataset. (b–d) Fringe and 
lobe–interlobe points. (e–g) Fringe and lobe–interlobe classes are shown in orange and yellow, respectively. 
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he stratigraphic framework with the orthophotomosaic, as shown in
ig. 5 . 

.1. Image labeling 

The images were labeled in Adobe Photoshop through the following
teps: (i) creating two new layers for lobe-interlobe and fringe labels; (ii)
sing the quick selection tool, either using a computer mouse or a pen
ablet, to select the portion of the image corresponding to each label; (iii)
pplying the paint bucket tool to fill the label to the corresponding layer
sing a pre-defined colour; and (iv) exporting each layer as a separate
NG image for each label. 

Of the 721 images captured in the field, 69 were randomly selected
nd labeled using this approach ( Fig. 6 ), with an average labeling time
f 9 min and 18 s. Labeling the entire dataset required approximately
0 h of human work. 

.2. CNN results 

The CNN model’s accuracy assessment ( Section 2.2 ) was performed
n increments of five images. As shown in Fig. 7 , after 30 labeled images,
he model stabilized at an average accuracy of 82 %. Table 1 shows the
alidation results for a 50/50 train/test split. The final model was then
rained on all 69 labeled images and applied to segment the full dataset.

The model was implemented in Python using the specialized Ten-
orFlow library and run on a machine equipped with an Intel Core I7
9

12th generation) processor and an NVIDIA GeForce RTX A5500 graph-
cs card with 24 GB of dedicated memory and 32 GB of shared memory.
he output produced 721 labels for the lobe-interlobe and 721 for the
ringe. 

Fig. 8 illustrates the retrained model’s final predictive capability. An-
lyzing the entropy maps allows it to identify regions where the model
as more confident in its predictions and areas where it struggled to
redict the actual architectural elements. 

.3. SfM-MVS 

The SfM-MVS pipeline was implemented using the Agisoft
etashape software. The entire dataset was imported into a single pro-

essing group (chunk), and the original image size and generic prese-
ection were set to run the alignment procedure, resulting in 711,000
ie points. The MVS procedure has been applied to the entire dataset,
roducing 455 million points in the cloud ( Fig. 9 a). 

The processing group was duplicated twice, and each label set was
mported into the software. The MVS procedure was then run by cal-
ulating depth maps for each image only in the labeled image region.
his generated two separate classified 3D point clouds: one for the lobe-

nterlobe architectural element, containing 85 million points, and one
or the fringe element, containing 21 million points ( Fig. 9 c and d). 

Even though the U-net’s accuracy might not be perfect, the SfM-MVS
ipeline reconstructs the 3D point clouds based on two or more overlap-
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Fig. 12. Three images from the dataset to exemplify the segmentation results of the points shown in Fig. 11 . The original image (a, b, and g), the depth maps for 
the fringe architectural element (b, e, and h), and for the lobe-interlobe (c, f, and i) are shown. 
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ing segmented images; eventual segmentation errors are automatically
ltered out from the cloud. As the model’s output is used to mask the

mages for the photogrammetry step, only points in space covered by
ultiple masks will be present in the 3D point cloud. Additionally, the
orkflow classifies architectural elements, removes noisy points, and ef-

ectively filters out points that do not correspond to outcropping rocks,
uch as vegetation and surface sediments. As shown in Figs. 9 , 10 , and
1 , the resulting classified 3D point clouds contain minimal classifica-
ion errors or noisy points, primarily containing points related to the
egmented architectural elements. 

. Discussions 

The proposed workflow for generating classified 3D point clouds for
acies based on CNN-segmented images offers several advantages over
raditional manual classification, though it also has some limitations,
hich are discussed here. Manual classification of 3D point clouds from

ock outcrops, open-pit mines, road cuts, or tunnels is generally im-
ractical (e.g., Weidner & Kromer, 2019 ). The main reasons are: (i)
he high volume of data in a typical survey, which can cover hundreds
o several thousand square meters and contain hundreds of millions or
ven billions of points in the cloud; (ii) the process is excessively time-
onsuming, requiring intense human labor usually carried out by a team
f expert geoscientists; (iii) manual classification is prone to errors, such
s misidentifying or misclassifying points due to fatigue, subjectivity,
r differing interpretations of rock features; (iv) inconsistent results, as
ifferent experts might classify the same point cloud differently based
n their experience or perspective, reducing the reliability and repro-
ucibility; and (v) limited scalability, as it is nearly impossible to manu-
lly interpret large areas or multiple sites (e.g., Waldhauser et al., 2014 ;
ong et al., 2020 ; Daghigh et al., 2022 ; Mirzaei et al., 2022 ). 

In contrast, the proposed workflow reduces human labor and inter-
retation time, increases reproducibility, and allows uncertainty estima-
10
ion. One key benefit is the removal of noisy points and non-geological
lements such as vegetation, soil, the sky, or man-made objects. Further-
ore, the approach potentially applies to various geological scenarios,

s discussed below. 
In the La Jardinera case study, labeling the two visible architectural

lements, lobe-interlobe and fringe, took about 10 min per image, total-
ng approximately 10 h of human labor. This time may vary depending
n the geological complexity and heterogeneity of the exposure and the
nterpreter’s experience. Manual point-by-point labeling of the 3D point
loud is unfeasible, as it contains 45 million points. In contrast, man-
ally labeling groups of points is feasible and could be completed in
he same 10-hour timeframe. However, this would still be subject to
he same limitations of manual interpretation, including misclassifica-
ion and lack of reproducibility. The proposed workflow can be rerun
nytime by simply executing the code. Users can identify misclassifica-
ions, and the corresponding images can be labeled and added to the
ataset. This interactivity helps to reduce the widespread manual work
y focusing it only where necessary. 

Noisy points and non-geological elements are removed from the seg-
ented point clouds because the SfM-MVS pipeline requires at least two

mages of the same feature, captured from distinct perspectives, to gen-
rate the 3D point cloud. As a result, when CNN identifies a geological
eature in only one image, the pipeline does not generate points for it,
ffectively filtering it out. The same applies to non-geological features
ot segmented in the CNN model ( Figs. 11 and 12 ). As a result, the final
D models are more robust against misclassification. 

The labels used in the case study can be applied to classify 3D
oint clouds in similar geological records – turbidite deposits in prox-
mal environments, where lobe-interlobe and fringe architectural ele-
ents are present. Beyond that, the workflow has the potential to be

pplied in different geological scenarios, as it has already been used
o segment 3D point clouds of coral reefs by Hopkinson et al. (2020) ,
uval et al. (2021) , Sauder et al. (2023) , and Marlow et al. (2024) ; and
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o segment building façades (e.g., Lotte et al., 2018 ; Bacharidis et al.,
020 ), achieving satisfactory results. 

Considering the results presented here and those published in the
iterature, the workflow shows promise for a broader application in ge-
logical settings where visually distinct geological features occur. In the
uture, continued research in CNN-based segmentation of geological out-
rop images could lead to developing a large labeled dataset, similar to
hose used in medical imaging applications (e.g., Armato III et al., 2015 ),
ltimately enabling broader applicability across various geological con-
exts. 

A key limitation of this workflow is the need to reduce the image
esolution to improve computational performance, which can hinder the
odel’s ability to classify thin layers accurately. Another limitation is

he model’s tendency to confuse fresh rock with segregated material
ue to similar color and texture. Both issues can be mitigated through
mproved pre-processing and data augmentation strategies. 

. Conclusions 

The workflow presented in this study has been successfully applied
o segment the 3D point cloud of the La Jardinera outcrop and clas-
ify the architectural elements within the turbidite depositional system.
otably, only a small fraction ( ∼10 %) of the images required manual

abeling, which took approximately 10 h of human effort. The workflow
fficiently reduces human interference and interpretation time while im-
roving reproducibility. The resulting classified 3D point clouds contain
ery few noisy points and focus on accurately reconstructing the exposed
ocks, minimizing the need to filter out vegetation, sediments, and sky.

Additionally, future workflow applications in different geological
ettings will be essential to demonstrate their versatility and validate
heir broader applicability. Generating large, interpreted datasets may
lso provide a foundation for training models in unexplored areas,
hereby contributing to the advancement of deep learning techniques
n geological research. 
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